
Université Sorbonne
Paris Nord

Laboratoire
d'Informatique de

Paris Nord

Faster Algorithms for
Approximating

Combinatorial and Geometric
Data

Thèse de doctorat présentée par Alexandre Louvet

pour l’obtention du grade de Docteur en Informatique

soutenue le 10 juillet 2025 devant le jury d'examen constitué de

Victor-Emmanuel Brunel École Nationale de la Statistique et de
l'Administration Economique Directeur

Mónika Csikós Université Paris Cité Examinatrice
Yan Gérard Université Clermont Auvergne Examinateur

Guillaume Lecué École Supérieure des Sciences Economiques et
Commerciales Examinateur

Nabil Mustafa Université Sorbonne Paris Nord Directeur
János Pach Rényi Institute of Mathematics Examinateur
Sophie Toulouse Université Sorbonne Paris Nord Examinatrice

Rapporteurs

Sergio Cabello University of Ljubljana Rapporteur
Jeff M. Phillips University of Utah Rapporteur

Abstract
High-dimensional data are common in fields like genomics, image processing, and social net-
work analysis. They present significant challenges in computational and statistical analysis.
Datasets of larger and larger size in these different fields increases the need for efficient data
approximation tools. Even if the dimension of data might be large, their intrinsic dimension,
that is, the minimal dimension of the information they bear might be small. This is represented
through concepts such as VC-dimension that we discuss in this work. We focus our work on
finding efficient algorithm for large datasets of fixed intrinsic dimension.

In this thesis, we present algorithms to compute some fundamental structures of combinatorial
data reduction: 𝜀-approximations, 𝛿-coverings, low-discrepancy colorings and low-crossing
partitions. In particular we study the following three problems.

In the first part, we present a new two-player game and show the existence of an almost
optimal strategy using the celebrated Lovett-Meka discrepancy algorithm. We then present a
multiplicative weights algorithms to compute a family of small average discrepancy colorings
that uses our game’s value in its analysis.

In the second part, we present a new low-crossing partition algorithm for general set systems.
This is the first instance of a practically fast algorithm to compute low-crossing partitions for
general set systems, as previous results are limited to set systems spanned by halfspaces in
low dimension.

Finally, we present new algorithms to compute near-minimal 𝛿-coverings of finite VC-dimen-
sion set systems. These algorithms are the first non-trivial algorithms to obtain 𝛿-coverings
of minimal size. We present applications of it to low-discrepancy coloring and 𝜀-approxima-
tion, deriving faster algorithms matching the optimal discrepancy of finite VC-dimension set
systems: 𝑂(𝑛1

2− 1
2𝑑).

Résumé en français
Les données de grande dimension sont courantes dans des domaines tels que la génomique,
le traitement d’images et l’analyse des réseaux sociaux. Elles posent des défis importants en
matière d’analyse computationnelle et statistique. L’augmentation de la taille des ensembles
de données dans ces différents domaines accroît le besoin d’outils efficaces d’approximation
des données. Même si la dimension des données peut être grande, leur dimension intrinsèque,
c’est-à-dire la dimension minimale de l’information qu’elles contiennent, peut être réduite.
Cela est représenté à travers des concepts tels que la dimension VC, que nous discutons dans
cette thèse. Nous concentrons notre étude sur la recherche d’algorithmes efficaces pour les
grands ensembles de données de dimension intrinsèque fixe.

Dans cette thèse, nous présentons des algorithmes pour calculer des structures fondamentales
de la réduction combinatoire des données : 𝜀-approximations, 𝛿-recouvrements, colorations
à faible discrépance et partitions à faibles croisements. En particulier, nous étudions les trois
problèmes suivants.

Dans la première partie, nous présentons un nouveau jeu à deux joueurs et montrons
l’existence d’une stratégie quasi-optimale en utilisant le célèbre algorithme de discrépance de
Lovett et Meka. Nous présentons ensuite un algorithme à poids multiplicatifs pour calculer
une famille de colorations à faible discrépance moyenne, utilisant la valeur de notre jeu dans
son analyse.

Dans la deuxième partie, nous présentons un nouvel algorithme de partition à faibles
croisements pour les systèmes d’ensembles généraux. Il s’agit de la première instance d’un
algorithme rapide en pratique pour calculer des partitions à faibles croisements de systèmes
d’ensembles généraux, les résultats précédents utilisant étant limités aux systèmes engendrés
par des demi-espaces en dimension faible.

Enfin, nous présentons de nouveaux algorithmes pour calculer des 𝛿-recouvrements quasi
minimaux de systèmes d’ensembles de dimension VC finie. Ces algorithmes sont les premiers
algorithmes non triviaux permettant d’obtenir des 𝛿-recouvrements de taille minimale. Nous
en présentons des applications à la coloration à faible discrépance et aux 𝜀-approximation, en
dérivant des algorithmes plus rapides atteignant la discrépance optimale pour les systèmes
d’ensembles de dimension VC finie : 𝑂(𝑛1

2− 1
2𝑑).

Contents

1 Context and contributions . 6
1.1 Preliminaries . 6
1.2 Combinatorial discrepancy games (Chapter 4) . 7
1.3 Low-crossing partitions (Chapter 5) . 8
1.4 𝛿-coverings and 𝛿-packings (Chapter 6) . 10

2 Contexte et contributions . 12
2.1 Connaissances préliminaires . 12
2.2 Jeux de discrépance combinatoire (Chapitre 4) . 13
2.3 Partitions à faibles croisements (Chapitre 5) . 14
2.4 𝛿-recouvrement et 𝛿-paquet (Chapitre 6) . 16

3 Previous work . 19
3.1 VC-dimension . 19
3.2 Approximations of set systems . 22
3.3 Packings in finite VC-dimension . 23
3.4 Combinatorial discrepancy . 31
3.5 Simplicial partitions . 41
3.6 Computing 𝜀-approximation with sub quadratic size in finite VC-dimension 43

4 A New Discrepancy Game . 47
4.1 LMB Game . 47
4.2 Low discrepancy coloring guided by the Lovett-Meka algorithm . 47
4.3 An almost optimal stochastic strategy for Alice . 50
4.4 MWU Algorithm . 52
4.5 Improvements of the MWU Algorithm using sampling . 55

5 A greedy algorithm for low-crossing partitions for general set systems 61
5.1 The Ordering Theorem . 61
5.2 Our Greedy Algorithm Using the Potential Function . 64
5.3 Variants . 67
5.4 Experiments . 69

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and
Applications . 82
6.1 A near-minimal covering algorithm for finite VC-dimension set systems 83
6.2 Applications of our 𝛿-covering algorithm . 86
6.3 Variations of our 𝛿-covering algorithm for specific types of set systems 91

7 Perspectives . 96

Bibliography . 98

4

Contents

Organization of the manuscript
In Chapter 1, we give an overview of the different problems that will be discussed throughout
this manuscript, as well as our main results on these problems.

In Chapter 3, we discuss the works in the literature related to the problems we discuss in the
manuscript.

In Chapter 4,5 and 6, we give the detailed proofs of our main results. The three chapters can
be read independently as they discuss problems that do not rely on each other.

In Chapter 4, we present a two-player game related to discrepancy. To illustrate its purpose,
we show algorithms to compute a family of small average discrepancy colorings. This chapter
relies on the following publication.

“Brunel, V., Louvet, A., & Mustafa, N. H. (2025). A new discrepancy game. https://hal.science/
hal-05064760”

In Chapter 5, we show the results of a new low-crossing partition algorithm for general set
system. This chapter is based on the following publication.

“Csikós, M., Louvet, A., & Mustafa, N. H. (2025). A Greedy Algorithm for Low-Crossing
Partitions for General Set Systems. In 2025 Proceedings of the Symposium on Algorithm
Engineering and Experiments (ALENEX) (pp. 209-220). Society for Industrial and Applied
Mathematics.”

In Chapter 6, we present new algorithms to compute near-minimal 𝛿-coverings of finite VC-
dimension set systems and the application of it to discrepancy.

Not included in the manuscript: “Bhore, S., Keszegh, B., Kupavskii, A., Le, H., Louvet, A.,
Pálvölgyi, D., & Tóth, C. D. (2025). Spanners in Planar Domains via Steiner Spanners and non-
Steiner Tree Covers. In Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (pp. 4292-4326). Society for Industrial and Applied Mathematics.”

Throughout this manuscript, we present statements in color boxes. Definitions are in red
boxes, corollary in green boxes and remarks in blue boxes. To present lemmas, theorems and
applications we use purple boxes for our contributions and yellow boxes for results of the
literature.

5

https://hal.science/hal-05064760
https://hal.science/hal-05064760

Chapter 1

Context and contributions
Each chapter in this thesis will present problems on set systems. We denote by 𝑋 the finite
ground set of 𝑛 elements, most often a subset of ℝ𝑑, and by ℱ the collection of 𝑚 subsets
of 𝑋. We refer to the elements of ℱ as ranges. We present problems on abstract as well as
geometric set systems.

1.1 Preliminaries
We first introduce some background concepts. We give more details on them in Chapter 3.

VC-dimension was first introduced by Vapnik and Chervonenkis [VC71] as a measure of
the complexity of a set of functions that can be learned by a statistical binary classification
algorithm. It is used to represent the complexity of a set system.

Definition 1.1. The VC-dimension of a set system (𝑋, ℱ), denoted by VC-dim(ℱ), is the
size of the largest 𝑌 ⊆ 𝑋 for which |ℱ|𝑌 | = |{𝐹 ∩ 𝑌 | 𝐹 ∈ ℱ}| = 2|𝑌 |, where | ⋅ | is the
cardinality of a finite set. We say that such a 𝑌 is shattered by ℱ.

An important operation on sets is the set symmetric difference. Let 𝑆, 𝑆′ be two finite sets;
we denote their symmetric difference Δ(𝑆, 𝑆′) by,

Δ(𝑆, 𝑆′) = (𝑆 ∪ 𝑆′) \ (𝑆 ∩ 𝑆′).

We call 𝛿-separated set systems such that for all distinct 𝐹, 𝐹 ′ ∈ ℱ, |Δ(𝐹 , 𝐹 ′)| ≥ 𝛿.

Finally, we introduce combinatorial discrepancy.

Definition 1.2. (Discrepancy) Let (𝑋, ℱ) be a set system. We call coloring a function 𝜒 :
𝑋 → {−1, 1}. We call discrepancy of (𝑋, ℱ) with respect to a coloring 𝜒 the value

disc𝜒(𝑋, ℱ) = max
𝐹∈ℱ

|𝜒(𝐹)|.

We call the discrepancy of (𝑋, ℱ) the value

min
𝜒:𝑋→{−1,1}

disc𝜒(𝑋, ℱ).

Computing colorings with small discrepancy has been widely studied, as it has applications
in a wide range of domains such as machine learning, optimization or mathematical finance¹.

In the next three sections, we present the main contributions in this thesis.

¹See chapter 1 of [Mat99].

6

1 Context and contributions

1.2 Combinatorial discrepancy games (Chapter 4)
In Chapter 4, we introduce a new two player game related to discrepancy called 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎.
The two players, Alice and Bob, compete in 𝑇 = Θ(𝑛) rounds. They play on the same set
system (𝑋, ℱ). Alice is only given the ground set 𝑋 of the set system and Bob the full set
system (𝑋, ℱ).

At each round 𝑡 = 1 to 𝑇 ,

• Alice chooses a coloring 𝜒𝑡 of 𝑋 and transmits it to Bob.
• On receiving 𝜒𝑡, Bob chooses a range 𝐹𝑡 ∈ ℱ and transmits it to Alice.

The goal of Alice is to minimize 1
𝑇 ∑𝑇

𝑡=1|𝜒𝑡(𝐹𝑡)| and for Bob to maximize the same expression.
Alice will discover the set system one range at a time as they are revealed to her by Bob.

The game looks hopeless for Alice, as she is expected to find a coloring with low discrepancy
on a set system she does not know. At first glance, it seems that the only viable strategy
is to pick a random coloring each iteration, which would result in 1

𝑇 ∑𝑇
𝑡=1|𝜒𝑡(𝐹𝑡)| =

𝑂(√𝑛 ln(𝑚)). It turns out, surprisingly, that Alice can obtain a much better bound in this
blind setting.

We will prove the following theorem in Chapter 4.

Contribution 1. (LMB Game) Let Alice and Bob play a 𝑇 rounds game of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 on
(𝑋, ℱ) with finite VC-dimension 𝑑.

There exists a strategy for Alice such that regardless of Bob’s choice of 𝐹𝑡,

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| = 𝑂

(
((𝑇 − 1

2𝑑
√

𝑛 log(𝑚) log(𝑛)√ln(𝑇 log(𝑛)) +
√

𝑛 max
(
((0, 4√ln(16𝑇

𝑛
)

)
))

)
))

with probability at least 12 .

In particular, for any constant 𝑐 ≥ 16 and 𝑛𝑐 ≤ 𝑇 ≤ 𝑛
16 , we obtain

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛)).

We show that there exists finite VC-dimension set systems where, regardless of Alice’s
strategy, Bob can make sure that 1

𝑇 ∑𝑇
𝑡=1|𝜒𝑡(𝐹𝑡)| = Ω(𝑛1

2− 1
2𝑑). That is, this bound is

optimal in the worst case up to a polylog(mn) factor.

The strategy of Alice relies on the discrepancy algorithm of Lovett and Meka [LM15] that we
present in detail in Chapter 3.

7

1 Context and contributions

 Application of Contribution 1. Using the result on 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎, we present an algorithmic
version of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 that computes a family of low average discrepancy colorings.

Given (𝑋, ℱ) a set system with finite VC-dimension 𝑑, our algorithm returns 𝑛
16 colorings

𝑥(1), …, 𝑥(𝑛) such that:

∀𝑘 ≤ 𝑚, 16
𝑛

𝔼
[
[[∑

𝑛
16

𝑡=1
|𝑣𝑘 · 𝑥(𝑡)|

]
]] = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛 log(𝑛)))

where for all 𝑡 ∈ [1, 𝑛
16], the coloring 𝑥(𝑡) is computed using only one additional range of

(𝑋, ℱ) that was not used to compute 𝑥(𝑡−1).

The algorithm succeeds with probability at least 14 in expected time 𝑂̃(𝑛4 + 𝑚𝑛3
2+ 1

2𝑑).

1.3 Low-crossing partitions (Chapter 5)
Let (𝑋, ℱ) be a set system. We say that a range 𝐹 ∈ ℱ crosses a set 𝑃 ⊆ 𝑋 if and only if
there exist two elements 𝑥, 𝑦 ∈ 𝑃 such that 𝑥 ∈ 𝐹 and 𝑦 ∉ 𝐹 . Let 𝐼(𝑃 , 𝐹) be the indicator
function that is 1 iff 𝐹 crosses 𝑃 , and 0 otherwise. Given a set system (𝑋, ℱ), our goal is
to construct a partition 𝒫 of 𝑋 such that each set is approximately the same size, and each
range in ℱ crosses a sublinear number of parts of 𝒫. These two properties are formalized in
the following definitions.

Definition 1.3. (Crossing Number) Given (𝑋, ℱ) and a partition 𝒫 = {𝑃1, …, 𝑃𝑡} of 𝑋,
the crossing number of ℱ with respect to 𝒫, denoted by 𝜅ℱ(𝒫), is the maximum number
of sets of 𝒫 that are crossed by a range in ℱ. Formally,

𝜅ℱ(𝒫) = max
𝐹∈ℱ

∑
𝑡

𝑖=1
𝐼(𝑃𝑖, 𝐹).

Definition 1.4. ((𝜏, 𝜅)-Partitions) Given a set system (𝑋, ℱ), 𝑛 = |𝑋|, a (𝑡, 𝜅)-parti-
tion of (𝑋, ℱ) is a partition of 𝑋 into disjoint sets 𝑃1, …, 𝑃𝑡 such that

(i) for all 𝑖 ∈ [𝑡 − 1], we have |𝑃𝑖| = ⌊𝑛
𝑡 ⌋,

(ii) 𝑛
𝑡 ≤ |𝑃𝑡| ≤ 2𝑛

𝑡 , and
(iii) 𝜅ℱ(𝒫) ≤ 𝜅.

We refer to the 𝑃𝑖’s as parts of the partition 𝒫.

Simplicial partitions are a key tool for the geometric range searching problem, where the aim
is to preprocess a set of points 𝑋 (in ℝ𝑑) to be able to answer simplex containment queries
on 𝑋. That is, each query specifies a simplex 𝑄 ⊆ ℝ𝑑, and the goal is to compute the set 𝑄 ∩
𝑋 quickly. The current-best way to solve this problem is via hierarchical data-structures (e.g.,
partition trees), which are derived from recursive applications of simplicial partitions [Mat92,
Mat93]. This construction was further improved and simplified by Chan [Cha12].

8

1 Context and contributions

Another application of simplicial partitions is set system approximation. [STZ06] showed that
low-crossing partitions imply the existence of small-error 𝜀-approximation².

On the experimental side, for the purposes of computing 𝜀-approximations, Matheny and
Phillips [MP18] constructed simplicial partitions for the specific case of set systems induced
by half-spaces in ℝ2, via methods inspired by the algorithms of Matoušek [Mat92] and Chan
[Cha12]. However these methods rely on cuttings; therefore all previous experimental studies
were limited to half-spaces in ℝ2.

In Chapter 5, we present our work on this problem. We consider the problem of computing
partitions with low crossing numbers for general set systems. We aimed for a simple algorithm
that is fast in practice. In particular, our method does not rely on cuttings and so it works for
general set systems, as well as geometric set systems in higher dimensions.

Contribution 2. Our algorithm constructs a low-crossing partition iteratively, building
one part at a time by greedily extending it with one element which does not introduce
too many new crossings. As a motivation for this greedy approach, we prove, under some
hereditary assumptions, that any (𝑡, 𝑂̃(𝑡1−1

𝑑)) partition can be created using this method.
The algorithm we present has time complexity 𝑂(𝑛𝑚𝑡). We also give a faster variant of
this algorithm with running time 𝑂̃(𝑚𝑛 + 𝑛𝑡2) that can, further, be partially parallelized
on as many as 𝑚 cores.

We present the evaluation of our algorithm on a variety of set systems, including abstract
and high-dimensional geometric ones. As an illustration, we compare the results of a uniform
random 𝜀-approximation to an 𝜀-approximation computed with our algorithm, for the geo-
metric set system induced by disks.

In Figure 2, we present the approximations of a set system with 8192 elements on concentric
circles and ranges induced by disks. On top, partitions computed with our algorithm (with
1024 random disks) and on the bottom with a uniform random sample. We see that the
approximation we obtain with a partition is visibly better, leaving fewer gaps on the concentric
circles, than a uniform random sample of the same size.

²See Section 3.6.1 for details on this construction.

9

1 Context and contributions

Sample size: 𝑛4 Sample size: 𝑛
16 Sample size: 𝑛

64

Our
Algorithm:

A uniform
random
sample:

Figure 2: Approximations of disks

1.4 𝛿-coverings and 𝛿-packings (Chapter 6)
In this chapter, we combine several tools and techniques to give new algorithms to compute
low-discrepancy colorings of finite VC-dimension set systems. We aim to give a self-contained
picture of the state-of-the-art algorithms to compute optimal discrepancy colorings of finite
VC-dimension set systems.

Let (𝑋, ℱ) be a finite set system and 𝛿 ∈ [1, 𝑛].

A 𝛿 −packing over (𝑋, ℱ) is 𝒫 ⊆ 2𝑋 such that for all 𝑃1, 𝑃2 ∈ 𝒫, |Δ(𝑃1, 𝑃2)| > 𝛿. We say
that 𝒫 is maximal if ∀𝐹 ∈ ℱ, ∃𝑃 ∈ 𝒫 s.t. |Δ(𝐹 , 𝑃)| ≤ 𝛿.

A 𝛿 −covering over (𝑋, ℱ) is 𝒞 ⊆ 2𝑋 such that for all 𝐹 ∈ ℱ, ∃𝐶 ∈ 𝒞 s.t. |Δ(𝐹 , 𝐶)| ≤
𝛿. We say that 𝒞 is minimal if ∀𝐶 ∈ 𝒞, ∃𝐹 ∈ ℱ s.t. |Δ(𝐹 , 𝐶)| ≤ 𝛿 and ∀𝐶′ ∈ 𝒞 \
{𝐶}, |Δ(𝐹 , 𝐶′)| > 𝛿.

By definition, a maximal 𝛿-packing is also a 𝛿-covering. However, a minimal 𝛿-covering might
not be a 𝛿-packing as two sets of a minimal 𝛿-covering can be arbitrarily close.

Haussler [Hau95] showed that the size of 𝛿-packings of finite VC-dimension set systems are
bounded by 𝑂((𝑛

𝛿)𝑑). 𝛿-coverings and 𝛿-packings are an important part of many results
improving general bounds in finite VC-dimension³. For some of these applications, the
computation of 𝛿-coverings is not necessary as they are only a tool of analysis of algorithms
and not part of the algorithms themselves. This is the case for 𝜀-approximations. However, in
some cases, they are needed. For instance, to compute optimal discrepancy colorings of finite
VC-dimension set systems, one needs to compute 𝛿-coverings of size matching the bound of
Haussler’s lemma.

³See chapter 13 of [BLM13] for applications in statistics and chapter 13 of [Mus22] for application to 𝜀-
approximation.

10

1 Context and contributions

A simple method to obtain minimal 𝛿-coverings and maximal 𝛿-packings is to construct them
greedily⁴. This method leads to 𝛿-coverings of size 𝑂((𝑛

𝛿)𝑑) in time 𝑂(𝑚𝑛𝑑+1

𝛿𝑑).

For some particular set systems, fast algorithms to compute small 𝛿-coverings are known.
This is, in particular, the case of set systems spanned by halfspaces where 𝛿-coverings can be
constructed using cuttings [Mat92]. The first non-trivial algorithm to compute 𝛿-coverings of
any set system of finite VC-dimension is due to Matoušek, Welzl and Wernisch [MWW93].

However this result is not optimal as set systems with finite VC-dimension admit 𝛿-coverings
of size at most 𝑂((𝑛

𝛿)𝑑) [Hau95].

In Chapter 6, we prove the following statement.

Contribution 3. Given a set system (𝑋, ℱ) with VC-dimension at most 𝑑 and 𝛿 ∈ [4, 𝑛],
there exists an algorithm that computes a 𝛿-covering of size 𝑂((𝑛

𝛿)𝑑) with probability at
least 12 . The algorithm has time complexity 𝑂(𝑚𝑑𝑛

𝛿 log(𝑛
𝛿) + (𝑛

𝛿)2𝑑+2 log𝑑(𝑛
𝛿)).

This improves the result of [MWW93] by removing the log factor from [MWW93] bound with
an increase in time complexity of 𝑂((𝑛

𝛿)𝑑+2) for 𝛿 = Ω(√𝑛 log(𝑛
𝛿)) and the same time

complexity otherwise.

Our algorithm is the first instance of a non-trivial algorithm to compute 𝛿-coverings of any
finite VC-dimension set systems of size matching Haussler’s bound.

In the same chapter, we also give variants of this algorithm for specific types of finite VC-
dimension set systems.

Matoušek [Mat95] proved, following on Matoušek, Welzl and Wernisch’s work [MWW93],
that finite VC-dimension set systems admit colorings with discrepancy of order 𝑂(𝑛1

2− 1
2𝑑)

which is optimal [BC86]. However, Matoušek’s result is not constructive.

 Application of Contribution 3. Combining Matoušek’s work, our 𝛿-covering algorithm
and the work of Lovett and Meka on discrepancy [LM15], we present in Chapter 6 an
algorithm that computes a coloring with discrepancy 𝑂(𝑛1

2− 1
2𝑑). The algorithm has time

complexity 𝑂̃(𝑚𝑛1
𝑑 + 𝑛2+2

𝑑 log𝑑(𝑛) + 𝑛3 log3𝑑(𝑚𝑛)).

This improves on both best previous results. On the one hand, it improves the discrepancy
bound obtained by combining the covering algorithm of [MWW93] with the discrepancy
algorithm of [LM15] that produces a coloring with discrepancy 𝑂(𝑛1

2− 1
2𝑑 √log(log(𝑛))) in

time 𝑂̃(𝑚𝑛1
𝑑 + 𝑛3 log3𝑑(𝑚𝑛)). On the other hand, it improves the runtime of combining

greedy covering with the algorithm of [LM15] for 𝑑 > 1. This method produces a coloring
with discrepancy 𝑂(𝑛1

2− 1
2𝑑) in time 𝑂̃(𝑚𝑛2 + 𝑛3 log3𝑑(𝑚𝑛)).

⁴See details in Section 3.3.1.1.

11

Chapter 2

Contexte et contributions
Chaque chapitre de cette thèse présente des problèmes sur les systèmes d’ensembles. On note
𝑋 l’ensemble de base fini de 𝑛 éléments, le plus souvent un sous-ensemble de ℝ𝑑, et ℱ la
collection de 𝑚 sous-ensembles de 𝑋. On appelle les éléments de ℱ des ensembles d’étendues.
Nous étudions des problèmes sur des systèmes d’ensembles abstraits ainsi que géométriques.

2.1 Connaissances préliminaires
Nous introduisons d’abord quelques notions de base, détaillées davantage dans le Chapitre 3.

La dimension VC a été introduite par Vapnik et Chervonenkis [VC71] comme mesure de la
complexité d’un ensemble de fonctions pouvant être appris par un algorithme de classification
binaire statistique. Elle sert à représenter la complexité d’un système d’ensembles.

Definition 2.1. La dimension VC d’un système d’ensembles (𝑋, ℱ), notée VC-dim(ℱ), est
la taille du plus grand 𝑌 ⊆ 𝑋 tel que |ℱ|𝑌 | = |{𝐹 ∩ 𝑌 | 𝐹 ∈ ℱ}| = 2|𝑌 |, où | ⋅ | désigne
la cardinalité d’un ensemble fini. Un tel 𝑌 est dit être éclaté (shattered) par ℱ.

Une opération importante sur les ensembles est la différence symétrique, qui peut être utilisée
comme une métrique entre ensembles d’étendues. Soient 𝑆, 𝑆′ deux ensembles finis, on note
leur différence symétrique Δ(𝑆, 𝑆′) définie comme

Δ(𝑆, 𝑆′) = (𝑆 ∪ 𝑆′) \ (𝑆 ∩ 𝑆′).

On dit qu’un système d’ensembles est 𝛿-séparé si pour tous 𝐹, 𝐹 ′ ∈ ℱ distincts, |Δ(𝐹 , 𝐹 ′)| ≥
𝛿.

Enfin, nous présentons la notion de discrépance combinatoire.

Definition 2.2. (Discrépance) Soit (𝑋, ℱ) un système d’ensembles. On appelle
coloration une fonction 𝜒 : 𝑋 → {−1, 1}. La discrépance de (𝑋, ℱ) par rapport à une
coloration 𝜒 est définie par

disc𝜒(𝑋, ℱ) = max
𝐹∈ℱ

|𝜒(𝐹)|.

La discrépance de (𝑋, ℱ) est alors donnée par

min
𝜒:𝑋→{−1,1}

disc𝜒(𝑋, ℱ).

Le calcul de colorations à faible discrépance a été largement étudié car il a des applications
dans de nombreux domaines tels que l’apprentissage automatique, l’optimisation ou la finance
mathématique⁵.

⁵Voir le chapitre 1 de [Mat99].

12

2 Contexte et contributions

Dans les trois sections suivantes, nous présentons les principales contributions de cette thèse.

2.2 Jeux de discrépance combinatoire (Chapitre 4)
Dans le Chapitre 4, nous introduisons un nouveau jeu à deux joueurs lié à la discrépance appelé
𝙹𝚎𝚞 𝙻𝙼𝙱. Les deux joueurs, Alice et Bob, s’affrontent pendant 𝑇 = Θ(𝑛) tours. Ils jouent sur
le même système d’ensembles (𝑋, ℱ). Alice ne connaît que l’ensemble de base 𝑋 du système
d’ensembles, tandis que Bob connaît l’ensemble complet (𝑋, ℱ).

À chaque iteration 𝑡 = 1 à 𝑇 ,

• Alice choisit une coloration 𝜒𝑡 de 𝑋 et la transmet à Bob.

• À la réception de 𝜒𝑡, Bob choisit une étendue 𝐹𝑡 ∈ ℱ et la transmet à Alice.

L’objectif d’Alice est de minimiser 1
𝑇 ∑𝑇

𝑡=1|𝜒𝑡(𝐹𝑡)|, tandis que celui de Bob est de maximiser
cette même expression. Alice découvre le système d’ensembles une étendue à la fois, au fur et
à mesure que Bob les lui révèle.

Le jeu semble perdu d’avance pour Alice, car on attend d’elle qu’elle trouve une coloration de
faible discrépance sur un système d’ensembles qu’elle ne connaît pas. À première vue, il semble
que la seule stratégie viable soit de choisir une coloration aléatoire à chaque itération, ce
qui mènerait à 1

𝑇 ∑𝑇
𝑡=1|𝜒𝑡(𝐹𝑡)| = 𝑂(√𝑛 ln(𝑚)). Il s’avère, de manière surprenante, qu’Alice

peut obtenir une bien meilleure borne même dans ce cadre aveugle.

Nous démontrerons le théorème suivant dans le Chapitre 4.

Contribution 1. (Jeu LMB)

Soient Alice et Bob jouant un jeu de 𝑇 tours du 𝙹𝚎𝚞 𝙻𝙼𝙱 sur (𝑋, ℱ) avec une dimension
VC finie 𝑑.

Il existe une stratégie pour Alice telle que, quel que soit le choix de 𝐹𝑡 par Bob,

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| = 𝑂

(
((𝑇 − 1

2𝑑
√

𝑛 log(𝑚) log(𝑛)√ln(𝑇 log(𝑛)) +
√

𝑛 max
(
((0, 4√ln(16𝑇

𝑛
)

)
))

)
))

avec une probabilité d’au moins 12 .

En particulier, pour toute constante 𝑐 ≥ 16 et 𝑛𝑐 ≤ 𝑇 ≤ 𝑛
16 , on obtient

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛)).

Nous montrons qu’il existe des systèmes d’ensembles de dimension VC finie pour lesquels,
quelle que soit la stratégie d’Alice, Bob peut s’assurer que 1

𝑇 ∑𝑇
𝑡=1|𝜒𝑡(𝐹𝑡)| = Ω(𝑛1

2− 1
2𝑑).

Autrement dit, cette borne est optimale dans le pire des cas à un facteur polylog(mn) près.

La stratégie d’Alice repose sur l’algorithme de discrépance de Lovett et Meka [LM15], que
nous détaillons dans le Chapitre 3.

13

2 Contexte et contributions

 Application de Contribution 1. En utilisant le résultat sur le 𝙹𝚎𝚞 𝙻𝙼𝙱, nous présentons
un algorithme à poids multiplicatifs pour calculer une famille de colorations à faible
discrépance moyenne.

Étant donné (𝑋, ℱ) un système d’ensembles de dimension VC finie 𝑑, notre algorithme
renvoie 𝑛

16 colorations 𝑥(1), …, 𝑥(𝑛) telles que :

∀𝑘 ≤ 𝑚, 16
𝑛

𝔼
[
[[∑

𝑛
16

𝑡=1
|𝑣𝑘 · 𝑥(𝑡)|

]
]] = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛 log(𝑛)))

avec une probabilité d’au moins 14 en temps espéré 𝑂̃(𝑛4 + 𝑚𝑛3
2+ 1

2𝑑).

2.3 Partitions à faibles croisements (Chapitre 5)
Soit (𝑋, ℱ) un système d’ensembles. On dit qu’un ensemble 𝐹 ∈ ℱ coupe un ensemble 𝑃 ⊆
𝑋 s’il existe deux éléments 𝑥, 𝑦 ∈ 𝑃 tels que 𝑥 ∈ 𝐹 et 𝑦 ∉ 𝐹 . On note 𝐼(𝑃 , 𝐹) la fonction
indicatrice qui vaut 1 si 𝐹 coupe 𝑃 , et 0 sinon. Étant donné un système d’ensembles (𝑋, ℱ),
notre objectif est de construire une partition 𝒫 de 𝑋 telle que chaque ensemble soit de taille
approximativement égale, et chaque ensemble d’étendues dans ℱ coupe un nombre sous-
linéaire de parties de 𝒫. Ces deux propriétés sont formalisées par les définitions suivantes.

Definition 2.3. (Nombre de croisements) Étant donné (𝑋, ℱ) et une partition 𝒫 =
{𝑃1, …, 𝑃𝑡} de 𝑋, le nombre de croisements de ℱ par rapport à 𝒫, noté 𝜅ℱ(𝒫), est le
nombre maximal de parties de 𝒫 coupées par un ensemble d’étendues dans ℱ. Formelle-
ment,

𝜅ℱ(𝒫) = max
𝐹∈ℱ

∑
𝑡

𝑖=1
𝐼(𝑃𝑖, 𝐹).

Definition 2.4. ((𝜏, 𝜅)-Partitions) Soit (𝑋, ℱ) un système d’ensembles, 𝑛 = |𝑋|, une
(𝑡, 𝜅)-partition de (𝑋, ℱ) est une partition de 𝑋 en ensembles disjoints 𝑃1, …, 𝑃𝑡 telle que

(i) pour tout 𝑖 ∈ [𝑡 − 1], on a |𝑃𝑖| = ⌊𝑛
𝑡 ⌋,

(ii) 𝑛
𝑡 ≤ |𝑃𝑡| ≤ 2𝑛

𝑡 , et
(iii) 𝜅ℱ(𝒫) ≤ 𝜅.

On appelle les 𝑃𝑖 les parties de la partition 𝒫.

Les partitions simpliciales sont un outil clé pour le problème de recherche d’étendues
géométrique, où le but est de prétraiter un ensemble de points 𝑋 (dans ℝ𝑑) afin de pouvoir
répondre efficacement à des requêtes d’inclusion dans un simplexe. Chaque requête spécifie
un simplexe 𝑄 ⊆ ℝ𝑑 et le but est de calculer rapidement l’ensemble 𝑄 ∩ 𝑋. La meilleure
approche actuelle repose sur des structures de données hiérarchiques (par exemple, les arbres
de partition), issues d’applications récursives de partitions simpliciales [Mat92, Mat93]. Cette
construction a été améliorée et simplifiée par Chan [Cha12].

14

2 Contexte et contributions

Une autre application des partitions simpliciales est l’approximation de systèmes d’ensembles.
[STZ06] a montré que les partitions à faibles croisements impliquent l’existence d’𝜀-approxi-
mations à faible erreur⁶.

Du point de vue expérimental, pour le calcul des 𝜀-approximations, Matheny et Phillips
[MP18] ont construit des partitions simpliciales pour le cas spécifique des systèmes
d’ensembles induits par des demi-espaces dans ℝ2, via des méthodes inspirées des algorithmes
de Matoušek [Mat92] et Chan [Cha12]. Cependant, ces méthodes reposent sur les découpages,
donc toutes les études expérimentales antérieures étaient limitées aux demi-espaces dans ℝ2.

Dans le Chapitre 5, nous présentons nos travaux sur ce problème. Nous considérons le prob-
lème de calcul de partitions à faible nombre de croisements pour des systèmes d’ensembles
généraux. Nous visons un algorithme simple et rapide en pratique. En particulier, notre
méthode ne repose pas sur des découpages et fonctionne donc pour les systèmes d’ensembles
généraux, ainsi que pour les systèmes géométriques en dimension élevée.

Contribution 4. Notre algorithme construit une partition à faibles croisements de
manière itérative, en construisant une partie à la fois en l’agrandissant gloutonnement
avec un élément qui n’introduit pas trop de nouveaux croisements. Pour motiver cette
approche gloutonne, nous démontrons, sous certaines hypothèses d’hérédité, que toute
partition (𝑡, 𝑂̃(𝑡1−1

𝑑)) peut être créée ainsi. L’algorithme a une complexité en temps de
𝑂(𝑛𝑚𝑡). Nous présentons aussi une variante plus rapide avec une complexité 𝑂̃(𝑚𝑛 +
𝑛𝑡2), parallélisable sur jusqu’à 𝑚 cœurs.

Nous présentons l’évaluation de notre algorithme sur une variété de systèmes d’ensembles,
y compris des systèmes abstraits et géométriques en grande dimension. À titre d’illustration,
nous comparons les résultats d’une 𝜀-approximation aléatoire uniforme avec une 𝜀-approxi-
mation calculée à l’aide de notre algorithme, pour le système d’ensembles géométrique induit
par des disques.

Dans la Figure 4, nous présentons les approximations d’un système d’ensembles avec 8192
éléments disposés sur des cercles concentriques et des étendues induites par des disques. En
haut, les partitions calculées avec notre algorithme (avec 1024 disques aléatoires) et en bas,
avec un échantillon aléatoire uniforme. On observe que l’approximation obtenue avec une

⁶Voir Section 3.6.1 pour plus de détails sur cette construction.

15

2 Contexte et contributions

partition est visiblement meilleure, laissant moins de trous sur les cercles concentriques, qu’un
échantillon aléatoire uniforme de même taille.

Sample size: 𝑛4 Sample size: 𝑛
16 Sample size: 𝑛

64

Our
Algorithm:

A uniform
random
sample:

Figure 4: Approximations de disques

2.4 𝛿-recouvrement et 𝛿-paquet (Chapitre 6)
Dans ce chapitre, nous combinons plusieurs outils et techniques afin de proposer de nouveaux
algorithmes pour calculer des colorations de faible discrépance dans des systèmes d’ensembles
de dimension VC finie. Notre objectif est de fournir une vue d’ensemble autonome des
algorithmes les plus avancés permettant de calculer des colorations optimales en termes de
discrépance pour ces systèmes. Soit (𝑋, ℱ) un système d’ensembles fini et 𝛿 ∈ [1, 𝑛].

Un 𝛿-paquet sur (𝑋, ℱ) est un ensemble 𝒫 ⊆ 2𝑋 tel que ∀𝑃1, 𝑃2 ∈ 𝒫, |Δ(𝑃1, 𝑃2)| > 𝛿. On
dit que 𝒫 est maximal si ∀𝐹 ∈ ℱ, ∃𝑃 ∈ 𝒫 t.q. |Δ(𝐹 , 𝑃)| ≤ 𝛿.

Un 𝛿-recouvrement sur (𝑋, ℱ) est un ensemble 𝒞 ⊆ 2𝑋 tel que ∀𝐹 ∈ ℱ, ∃𝐶 ∈ 𝒞 tel que
|Δ(𝐹 , 𝐶)| ≤ 𝛿. On dit que 𝒞 est minimal si ∀𝐶 ∈ 𝒞, ∃𝐹 ∈ ℱ t.q. |Δ(𝐹 , 𝐶)| ≤ 𝛿 et ∀𝐶′ ∈
𝒞 \ {𝐶}, |Δ(𝐹 , 𝐶′)| > 𝛿.

Par définition, un 𝛿-paquet maximal est aussi un 𝛿-recouvrement. Cependant, les 𝛿-recou-
vrements minimaux ne sont pas nécessairement des 𝛿-paquets, car deux ensembles d’un 𝛿
-recouvrement minimal peuvent être arbitrairement proches.

Haussler [Hau95] a montré que la taille des 𝛿-paquets pour des systèmes d’ensembles de
dimension VC finie est bornée par 𝑂((𝑛

𝛿)𝑑). Les 𝛿-recouvrements et 𝛿-paquets jouent un
rôle important dans de nombreux résultats permettant d’améliorer les bornes générales
en dimension VC finie⁷. Pour certaines de ces applications, il n’est pas nécessaire de
calculer explicitement les 𝛿-recouvrements, car ils servent uniquement d’outil d’analyse des
algorithmes et ne font pas partie des algorithmes eux-mêmes. C’est notamment le cas des 𝜀-
approximations. Cependant, dans certains cas, ils sont nécessaires. Par exemple, pour calculer

⁷Voir le chapitre 13 de [BLM13] pour des applications en statistique et le chapitre 13 de [Mus22] pour des
applications aux 𝜀-approximations.

16

2 Contexte et contributions

des colorations de discrépance optimales de systèmes d’ensembles à dimension VC finie, il
faut calculer des 𝛿-recouvrements dont la taille respecte la borne du lemme de Haussler.

Une méthode simple pour obtenir des 𝛿-recouvrements minimaux et des 𝛿-paquets maximaux
consiste à les construire de manière gloutonne⁸. Cette méthode donne des 𝛿-recouvrements
de taille 𝑂((𝑛

𝛿)𝑑) en temps 𝑂(𝑚𝑛𝑑+1

𝛿𝑑).

Pour certains systèmes d’ensembles particuliers, des algorithmes rapides pour calculer de
petits 𝛿-recouvrements sont connus. C’est notamment le cas des systèmes induits par des
demi-espaces, où les 𝛿-recouvrements peuvent être construits à l’aide de découpages [Mat92].
Le premier algorithme non trivial permettant de calculer des 𝛿-recouvrements pour n’importe
quel système d’ensembles de dimension VC finie est dû à Matoušek, Welzl et Wernisch
[MWW93].

Cependant, ce résultat n’est pas optimal, car les systèmes d’ensembles à dimension VC finie
admettent des 𝛿-recouvrements de taille au plus 𝑂((𝑛

𝛿)𝑑) [Hau95].

Dans le Chapitre 6, nous prouvons l’énoncé suivant.

Contribution 2. Étant donné un système d’ensembles (𝑋, ℱ) de dimension VC au plus 𝑑
et 𝛿 ∈ [4, 𝑛], il existe un algorithme qui calcule un 𝛿-recouvrement de taille 𝑂((𝑛

𝛿)𝑑) avec
une probabilité d’au moins 1

2 . L’algorithme a une complexité en temps 𝑂(𝑚𝑑𝑛
𝛿 log(𝑛

𝛿) +
(𝑛

𝛿)2𝑑+2 log𝑑(𝑛
𝛿)).

Cela améliore le résultat de [MWW93] en supprimant le facteur log de leur borne, au
prix d’une complexité en temps augmentée de 𝑂((𝑛

𝛿)𝑑+2) pour 𝛿 = Ω(√𝑛 log(𝑛
𝛿)), et de

complexité identique sinon.

Notre algorithme est la première instance d’un algorithme non trivial permettant de calculer
des 𝛿-recouvrements de taille correspondant à la borne de Haussler pour tout système
d’ensembles de dimension VC finie.

Dans le même chapitre, nous présentons aussi des variantes de cet algorithme pour des types
spécifiques de systèmes à dimension VC finie.

Matoušek [Mat95] a démontré, à la suite des travaux de Matoušek, Welzl et Wernisch
[MWW93], que les systèmes à dimension VC finie admettent des colorations de discrépance
d’ordre 𝑂(𝑛1

2− 1
2𝑑), ce qui est optimal [BC86]. Cependant, le résultat de Matoušek n’est pas

constructif.

 Application de Contribution 2. En combinant le travail de Matoušek, notre algorithme
de 𝛿-recouvrement et celui de Lovett et Meka sur la discrépance [LM15], nous présen-
tons dans Chapitre 6 un algorithme qui calcule une coloration avec une discrépance
de 𝑂(𝑛1

2− 1
2𝑑). L’algorithme a une complexité en temps 𝑂̃(𝑚𝑛1

𝑑 + 𝑛2+2
𝑑 log𝑑(𝑛) +

𝑛3 log3𝑑(𝑚𝑛)).

⁸Voir les détails dans Section 3.3.1.1.

17

2 Contexte et contributions

Cela améliore les deux meilleurs résultats précédents. D’une part, cela améliore la borne de
discrépance obtenue en combinant l’algorithme de recouvrement de [MWW93] avec celui
de [LM15], qui donne une coloration de discrépance 𝑂(𝑛1

2− 1
2𝑑 √log(log(𝑛))) en temps

𝑂̃(𝑚𝑛1
𝑑 + 𝑛3 log3𝑑(𝑚𝑛)). D’autre part, cela améliore le temps d’exécution obtenu en com-

binant les recouvrements gloutons avec l’algorithme de [LM15] pour 𝑑 > 1. Cette méthode
produit une coloration avec discrépance 𝑂(𝑛1

2− 1
2𝑑) en temps 𝑂̃(𝑚𝑛2 + 𝑛3 log3𝑑(𝑚𝑛)).

18

Chapter 3

Previous work

3.1 VC-dimension
We give some intuition on the definition of VC-dimension introduced in Chapter 1.

Let the following ground set consisting of 4 points in the plane as presented in Figure 5.
Consider the set system with that ground set and every range formed by the intersection
between the ground set and a disk.

Figure 5: A ground set of 4 points in the plane

We can observe that the VC-dimension of this set system is at most 3 as the range that contains
all three blue points without containing the red point can not be achieved by a disk as any
disk containing the blue points will also contain the red one. In fact, the VC-dimension of such
a set system is exactly 3. We present more results on VC-dimension of some particular set
systems in the next section.

VC-dimension represents the combinatorial complexity of a set system. This combinatorial
limit also implies a bound on the size of set systems with finite VC-dimension. Sauer and
Shelah [Sau72, She72] independently showed that if (𝑋, ℱ) has finite VC-dimension 𝑑 then
|ℱ| = 𝑂(𝑛𝑑).

Lemma 3.1. ([Sau72, She72]) Let (𝑋, ℱ) be a set system with finite VC-dimension 𝑑,
then

∀𝑌 ⊆ 𝑋 s.t. |𝑌 | ≥ 𝑑, |ℱ|𝑌 | ≤ ∑
𝑑

𝑖=0
(|𝑌 |

𝑖
) = 𝑂(|𝑌 |𝑑).

In fact, this bound an almost be seen as the definition of VC-dimension itself. In particular,
the reciprocal of Lemma 3.1 is also true up to some logarithmic factor, that is

19

3 Previous work

Lemma 3.2. ([Mus22] Lemma 4.6) Let (𝑋, ℱ) be a set system such that

∀𝑌 ⊆ 𝑋 with |𝑌 | ≥ 𝑑, |ℱ|𝑌 | ≤ |𝑌 |𝑑

then the VC-dimension of (𝑋, ℱ) is at most 𝑑 log(𝑑).

Finite VC-dimension set systems have been also widely studied in statistical learning theory
for classification problems as they represent the idea that the information one aims to classify
is contained in a smaller space than the input size. For instance in image classification
problems this represents that only a subset of the pixels contain all the sufficient information
to solve the classification problem⁹.

3.1.1 VC-dimension of some common set systems
VC-dimension has been widely studied and the VC-dimension of some common set system
are well-known. We present some of these results.

First we discuss set systems spanned by some geometric object such as halfspaces or disks.
In that case we mean that the ranges are defined by all possible intersections between the
geometric objects and the ground set. Formally, given a set 𝑋 of elements of ℝ𝑑, the set system
spanned by halfspaces in ℝ𝑑 is (𝑋, ℱ) where

ℱ = {𝑋 ∩ ℋ, ℋ halfspace of ℝ𝑑}.

VC-dimension of halfspaces. The VC-dimension of set systems spanned by halfspaces in ℝ𝑑

is 𝑑 + 1. This result comes from the fact that any set of 𝑑 + 1 points is shattered by halfspaces:
any set of 𝑑 + 1 points in general position is linearly dependent in ℝ𝑑. The upper bound on
the VC-dimension comes from radon’s lemma.

Lemma 3.3. (Radon’s lemma [Rad21]) Any set of 𝑑 + 2 points in ℝ𝑑 can be partitioned
into two sets whose convex hulls intersect.

This lemma implies that, calling 𝐴 and 𝐵 the two partitions of a set of size 𝑑 + 2 given by
Lemma 3.3, it is not possible to find a halfspace containing exclusively the element of 𝐴 as
there will be elements of 𝐵 on both sides of the halfspaces. We illustrate this in ℝ2 in Figure 6,
where it is not possible to find a halfspace containing all the red dots and no blue cross.

⁹See [DGL13] chapter 12 and 13 for more on applications of VC-dimension to statistical learning theory.

20

3 Previous work

Figure 6: The red points cannot be separated from the blue points

Bounds have been shown to exist for a variety of set systems spanned by geometric objects.
For instance the VC-dimension of set systems spanned by balls in ℝ𝑑 is 𝑑 + 1 (see proof in
[Mus22], Lemma 4.14).

VC-dimension of dual set systems.

Definition 3.4. The dual set system of a set system (𝑋, ℱ) is defined as (𝑌 , 𝒢) where

𝑌 = {𝑦𝐹 : 𝐹 ∈ ℱ} and 𝒢 = {{𝑦𝑠 : 𝐹 ∈ ℱ s.t. 𝑥 ∈ 𝐹} : 𝑥 ∈ 𝑋}.

If (𝑋, ℱ) has VC-dimension 𝑑, then the VC-dimension of (𝑌 , 𝒢) is at most 2𝑑+1. The proof
of this claim can be found in [Mat13] (Lemma 10.3.4).

VC-dimension of set systems formed by set operations. Finally we restate a result of
Dudley [Dud78] about the VC-dimension of set systems obtained with set operations. A
concise proof of this result can be found in [Mat13] (Proposition 10.3.3).

Lemma 3.5. ([Dud78, Mat13]) Let (𝑋, ℱ) be a set system with finite VC-dimension 𝑑
and 𝑘 ≥ 2 be a fixed positive integer. Let 𝜓 : (2𝑋)𝑘 → 2𝑋 be a function uses only the
union, intersection and symmetric difference operations.

Let 𝒯 = {𝜓(𝐹1, …, 𝐹𝑘) : 𝐹1, …, 𝐹𝑘 ∈ ℱ}. Then (𝑋, 𝒯) has VC-dimension = 𝑂(𝑘𝑑 ln(𝑘)).

This result directly implies a bound on the VC-dimension of the symmetric difference set
system.

Corollary 3.6. Let (𝑋, ℱ) be set system with VC-dimension ≤ 𝑑, Lemma 3.5 implies that
(𝑋, Δ(ℱ)) where:

Δ(ℱ) = {Δ(𝐹1, 𝐹2) : 𝐹1, 𝐹2 ∈ ℱ}

has VC-dimension = 𝑂(𝑑).

21

3 Previous work

This result follows from applying Lemma 3.5 with 𝑘 = 2.

3.2 Approximations of set systems

3.2.1 𝜀-nets
An 𝜀-net is a subset of 𝑋 such that any set containing more than an 𝜀 fraction of the points
contains at least one point of the net. Formally,

Definition 3.7. A set 𝑁 ⊆ 𝑋 is an 𝜀-net of ℱ iff

∀𝐹 ∈ ℱ s.t. |𝐹 | ≥ 𝜀𝑛, 𝐹 ∩ 𝑁 ≠ ∅.

Haussler and Welzl showed that in set systems with finite VC-dimension, 𝜀-net can be
constructed by uniformly sampling 𝑋.

Lemma 3.8. ([HW87]) Let (𝑋, ℱ) be a set system with finite VC-dimension 𝑑 and 𝜀 ∈
[0, 1

2], a uniform random sample of X of size 8𝑑
𝜀 log(8𝑑

𝜀) is an 𝜀-net of 𝑋 with probability
at least 1√

2 .

Pach and Woeginger [PW90] showed the existence of abstract set systems with VC-dimension
2 where any 𝜀-nets has size Ω(1

𝜀 log(1
𝜀)).

Later, Pach and Tardos [PT13] even showed that this lower bound holds for geometric set
systems.

An application of 𝜀-nets is presented in Section 3.3.1.2.

3.2.2 𝜀-approximations
An 𝜀-approximation is a subset of 𝑋 such that the set system obtained by projecting all ranges
of ℱ on the approximation maintains proportionally the same size up to an error depending
on 𝜀. Formally,

Definition 3.9. A set 𝐴 ⊆ 𝑋 is an 𝜀-approximation of ℱ if

| |𝐹 |
|𝑋|

− |𝐹 ∩ 𝐴|
|𝐴|

| ≤ 𝜀.

One can obtain an 𝜀-approximations from a uniform random sample of 𝑋 w.h.p. The simple
analysis of uniform sampling demonstrate that sampling uniformly 𝑂(1

𝜀2 ln(𝑚)) elements
of 𝑋 gives an 𝜀-approximation¹⁰. The following result is from the work of Li, Long and
Srinivasan [LLS01] building on Talagran’s result [Tal94]. They show that this bound can be
made completely independent of 𝑚 and 𝑛 for finite VC-dimension set systems. In that case
the number of elements to sample only depends on 𝜀 and the VC-dimension of the set system.

¹⁰See Theorem 12.2 of [Mus22] for a proof of this result.

22

3 Previous work

Lemma 3.10. ([LLS01, Tal94]) Let (𝑋, ℱ) be a set system with finite VC-dimension 𝑑
and 𝜀 ∈ [0, 1

2]. There exists a constant 𝑐 ∈ ℝ such that a uniform random sample of X of
size 𝑐𝑑

𝜀2 is an 𝜀-approximation of 𝑋 with probability at least 1√
2 for some absolute constant

𝑐.

A simple proof of this result can be found in [CM22].

This bound is not optimal and it is possible to improve it further by sampling points in a non-
uniform manner. In Section 3.6, we explain two methods to obtain 𝜀-approximation of size
𝑂(𝑑

𝜀
2𝑑

𝑑+1
).

3.3 Packings in finite VC-dimension
A small digression.

Question 3.11. (Sphere packing problem) For 𝜀 in]0, 1[,
how many spheres of radius 𝜀 can be packed in a sphere of
radius 1 of ℝ𝑑 ?

The sphere packing problem has been widely studied¹¹ and is still a very open problem. Despite
the problem having been studied for more than 400 years the optimality proof in dimension 8
is less than 10 years old [Via17] and the optimal packing is unknown in almost all dimensions
greater than 8. We do not extensively discuss the sphere packing problem but we present a
simple upper bound for the problem.

The volume of a ball of radius 𝑟 in ℝ𝑑 is

𝜋𝑑
2

Γ(𝑑
2 + 1)

𝑟𝑑 = 𝑓(𝑑)𝑟𝑑

where Γ is Euler’s gamma function.

A simple bound for the sphere packing problem is that the total volume occupied by packed
sphere can not exceed the volume of the sphere of radius 1. This gives that the number of
spheres packed 𝒮 is bounded by the inequality:

𝒮 × 𝑓(𝑑)𝜀𝑑 ≤ 𝑓(𝑑)1𝑑 ⇔ 𝒮 ≤ 𝑓(𝑑)1𝑑

𝑓(𝑑)𝜀𝑑 = (1
𝜀
)

𝑑
.

Haussler’s packing lemma.

Haussler shows that packing ranges at distance 𝛿 in set systems with 𝑛 elements and finite VC-
dimension 𝑑 roughly behave like packing spheres of radius 𝛿

𝑛 in ℝ𝑑. The bound that Haussler

¹¹See [CS13] for more information the sphere packing problem.

23

3 Previous work

proved is in fact equal, up to some multiplicative factor, to the bound presented for the sphere
packing problem.

 Haussler’s packing lemma ([Hau95]) Let (𝑋, ℱ) be a set system with VC-dimension
≤ 𝑑. If there exists 𝛿 ∈ [1, 𝑛] such that for all distinct 𝐹, 𝐹 ′ ∈ ℱ, |Δ(𝐹 , 𝐹 ′)| ≥ 𝛿, then
there exists a constant 𝑐H only depending on 𝑑 s.t.

|ℱ| ≤ 𝑐H(𝑛
𝛿
)

𝑑
.

Haussler also proved in [Hau95] that for all 𝛿 ∈ [1, 𝑛], there exists a 𝛿-separated set system
with VC-dimension 𝑑 of size Θ((𝑛

𝛿)𝑑) making this bound tight.

His construction is the set system (𝑋, ℱ) with 𝑋 = [1, 𝑛] and

ℱ = 𝑊(1, 𝑛
𝑑

) × … × 𝑊(𝑛 − 𝑛
𝑑

+ 1, 𝑛).

This represents all possible unions of exactly 𝑑 sets of 𝑊(1, 𝑛
𝑑), …, 𝑊(𝑛 − 𝑛

𝑑 + 1, 𝑛) where

∀𝑖 ∈ [1, 𝑑 − 1], 𝑊(𝑖𝑛
𝑑

+ 1, (𝑖 + 1)𝑛
𝑑

) = {∅, {𝑖𝑛
𝑑

+ 1}, …, {𝑖𝑛
𝑑

+ 1, …, (𝑖 + 1)𝑛
𝑑

}}.

The packing lemma is often used when one wants to enforce some property on all ranges of
the set system. This method usually consists of separating the ranges in two groups.
• A collection 𝒞 of ranges far apart from each other which size will be bounded using the

packing lemma. Enforcing some property on 𝒞 will then be “easier” than on the whole
collection ℱ.

• The remaining ranges ℱ \ 𝒞 where the property will be guaranteed with a small error
proportional to the symmetric difference with a range in 𝒞.

This method can lead to time complexity improvements as the property is enforced on a small
sub-collection of ℱ only. It can even lead to improvements in the bound when the property
can be guaranteed with some total budget as the budget per range increases since the total
number of range to enforce the property on decreases. An example of such improvement will
be presented in Section 3.4.

Haussler’s bound was later refined by Ezra [Ezr16] for set systems with (𝑑, 𝑑1)-property.
These set systems are such that for any sequence 𝐼 ⊆ 𝑋 with |𝐼| = 𝑙 and any parameter
1 ≤ 𝑘 ≤ 𝑙, the number of sets of size at most 𝑘 in ℱ|𝐼 = {𝐹 ∩ 𝐼, 𝐹 ∈ ℱ} is of size at most
𝑂(𝑛𝑑1𝑘𝑑−𝑑1). Then 𝛿-separated sets of such set system have size:

𝑂(𝑛𝑑1𝑘𝑑−𝑑1

𝛿𝑑)

where 𝑘 = max𝐹∈ℱ|𝐹 |. It is interesting to notice that for set systems with no particular bound
on the size of the biggest set, that is 𝑘 = 𝑛, Ezra’s result gives Haussler’s bound.

24

3 Previous work

The idea of parameterizing the VC-dimension to more finely describe how range are distrib-
uted depending on their size has been generalized as the notion of shallow-cell complexity. This
notion was first introduced by Chan, Grant, Könemann, and Sharpe [Cha+12]¹². The general-
ization of Haussler’s packing lemma to set systems with bounded shallow-cell complexity is
from Mustafa [Mus16].

3.3.1 𝛿-coverings and 𝛿-packings
We restate the definition of 𝛿-coverings and 𝛿-packings.

Definition 3.12. (𝛿-packings and 𝛿-coverings) A 𝛿 −packing over (𝑋, ℱ) is 𝒫 ⊆ 2𝑋

such that for all 𝑃1, 𝑃2 ∈ 𝒫, |Δ(𝑃1, 𝑃2)| > 𝛿. We say that 𝒫 is maximal if ∀𝐹 ∈ ℱ, ∃𝑃 ∈
𝒫 s.t. |Δ(𝐹 , 𝑃)| ≤ 𝛿.

A 𝛿 −covering over (𝑋, ℱ) is 𝒞 ⊆ 2𝑋 such that for all 𝐹 ∈ ℱ, ∃𝐶 ∈ 𝒞 s.t. |Δ(𝐹 , 𝐶)| ≤
𝛿. We say that 𝒞 is minimal if ∀𝐶 ∈ 𝒞, ∃𝐹 ∈ ℱ s.t. |Δ(𝐹 , 𝐶)| ≤ 𝛿 and ∀𝐶′ ∈ 𝒞 \
{𝐶}, |Δ(𝐹 , 𝐶′)| > 𝛿.

We present different methods to obtain 𝛿-coverings of various size.

Greedy construction of maximal 𝛿-packings and minimal 𝛿-coverings.

A simple method to obtain minimal 𝛿-coverings and maximal 𝛿-packings is to construct them
greedily.

Algorithm 1: Greedy maximal 𝛿-packings

Input: (𝑋, ℱ), 𝛿
1 𝒫 ← ∅
2 for 𝐹 ∈ ℱ do
3 if min𝑃∈𝒫|Δ(𝐹 , 𝑃)| > 𝛿 then
4 𝒫 ← 𝒫 ∪ {𝐹}
5 return 𝒫

Lemma 3.13. Given (𝑋, ℱ) a set system and 𝛿 ∈ [1, …, 𝑛], Algorithm 1 returns a maximal
𝛿-packing of (𝑋, ℱ) in time 𝑂(𝑚|𝑃 |𝑛).

Proof. The algorithm builds a maximal 𝛿-packing by adding iteratively any range with sym-
metric difference greater than 𝛿 to the packing. At the end of Algorithm 1 for any range 𝐹 not
added to the packing, there exists a range 𝑃 ∈ 𝒫 s.t. Δ(𝐹, 𝑃) ≤ 𝛿.

The time complexity comes from the fact that for each 𝐹 ∈ ℱ, we compute its symmetric
difference with at most |𝒫| ranges which can be done in 𝑂(𝑛) operations. This gives a time
complexity of:

¹²The reader may refer to Section 4.2 of [Mus22] for more information on shallow-cell complexity.

25

3 Previous work

𝑚⏟
|ℱ|

× |𝑃 | × 𝑛 = 𝑂(𝑚|𝑃 |𝑛).

□

Corollary 3.14. Given a set system (𝑋, ℱ) of finite VC-dimension 𝑑 and 𝛿 ∈ [1, …, 𝑛],
Haussler’s packing lemma implies that Algorithm 1 builds a maximal 𝛿-packing of (𝑋, ℱ)
of size 𝑂((𝑛

𝛿)𝑑) in time 𝑂(𝑚𝑛𝑑+1

𝛿𝑑).

In the same way, we present a greedy algorithm to construct minimal 𝛿-coverings.

Algorithm 2: Greedy minimal 𝛿-coverings

Input: (𝑋, ℱ), 𝛿
1 𝒞 ← ℱ
2 for 𝐹 ∈ ℱ do
3 if min𝐶∈𝒞|Δ(𝐹 , 𝐶)| ≤ 𝛿 then
4 𝒞 ← 𝒞 \ {𝐹}
5 return 𝒞

Lemma 3.15. Given (𝑋, ℱ) a set system and 𝛿 ∈ [1, …, 𝑛], Algorithm 2 returns a minimal
𝛿-packing of (𝑋, ℱ) in time 𝑂(𝑚|𝐶|𝑛).

We omit the proof of Lemma 3.15 as it is very similar to the proof of Lemma 3.13.

Fast constructions of 𝛿-coverings.

[MWW93] showed that 𝛿-coverings can be constructed efficiently using 𝜀-nets. The resulting
algorithm is presented below.

Algorithm 3: Efficient 𝛿-covering algorithm [MWW93]

Input: (𝑋, ℱ), 𝛿
1 𝒮 ← ∅
2 𝒞 ← ∅
3 𝑁 ← 𝛿

𝑛-net of (𝑋, Δ(ℱ))
4 for 𝐹 ∈ ℱ do
5 𝑄 ← 𝐹 ∩ 𝑁
6 if 𝑄 ∉ 𝒮 then
7 𝒮 ← 𝒮 ∪ {𝑄}
8 𝒞 ← 𝒞 ∪ {𝐹}
9 return 𝒞

They proved the following theorem.

26

3 Previous work

Theorem 3.16. ([MWW93]) Given (𝑋, ℱ) a set system with finite VC-dimension 𝑑
and 𝛿 ∈ [1, …, 𝑛], Algorithm 3 returns a 𝛿-covering of size 𝑂((𝑛

𝛿 log(𝑛
𝛿))𝑑) in time

𝑂(𝑚𝑑𝑛
𝛿 log(𝑛

𝛿) + 𝑑𝑛𝑑

𝛿𝑑 log𝑑+1(𝑛
𝛿)) with probability at least 1√

2 .

Proof. Lemma 3.8 and Corollary 3.6 shows that 𝑁 can be constructed by sampling 𝑂(𝑛
𝛿 log(𝑛

𝛿))
elements of 𝑋. Since 𝑁 is a 𝛿

𝑛-net with probability at least 1√
2 :

∀𝑅 ∈ Δ(ℱ) s.t. |𝑅| ≥ 𝛿, 𝑅 ∩ 𝑁 ≠ ∅.

In particular, this means that for two ranges 𝐹, 𝐹 ′ ∈ ℱ:

Δ(𝐹, 𝐹 ′) ≥ 𝛿 ⇒ Δ(𝐹, 𝐹 ′) ∩ 𝑁 ≠ ∅ ⇔ 𝐹 ∩ 𝑁 ≠ 𝐹 ′ ∩ 𝑁

as there must exist at least one element of 𝑁 that is in 𝐹 \ 𝐹 ′ or 𝐹 ′ \ 𝐹 .

For each 𝐹 ∈ ℱ, Algorithm 3 computes iteratively the intersection of 𝐹 with 𝑁 . Each iteration
where 𝐹 ∩ 𝑁 has not been obtained from some other 𝐹 ′ ∩ 𝑁 , F is added to 𝒞, the cover
that will be returned. Its intersection is added to 𝒮, the list of intersection that had not been
obtained.

This ensures that,

∀𝐹 ∈ ℱ, ∃𝐶 ∈ 𝒞 s.t. 𝐹 ∩ 𝑁 = 𝐶 ∩ 𝑁 ⇒ Δ(𝐹, 𝐹 ′) < 𝛿.

Therefore 𝒞 is a 𝛿-cover with size |𝒮|.

We now compute the size of 𝒮.

By Lemma 3.1,

|𝒮| = |ℱ|𝑁 | ≤ ∑
𝑑

𝑖=0
(|𝑁|

𝑖
) = 𝑂(|𝑁|𝑑) = 𝑂((𝑛

𝛿
log(𝑛

𝛿
))

𝑑
).

The runtime comes from the fact that for each 𝐹 ∈ ℱ, we need to determine whether its
intersection 𝐹 ∩ 𝑁 ∈ 𝒮. By maintaining a sorted tree structure on 𝒮, we can ensure that the
number of comparison to do is 𝑂(log(|𝒮|)) where each comparison can be done in 𝑂(|𝑁|)
operations. If 𝐹 ∩ 𝑁 ∉ 𝒮, we need to insert 𝐹 ∩ 𝑁 in 𝒮. The sorted tree structure guarantees
this insertions to be possible in 𝑂(log(|𝑆|)) operations. This gives a runtime of:

𝑚⏟
|ℱ|

× 𝑑 log(𝑛
𝛿

log(𝑛
𝛿
))

⏟⏟⏟⏟⏟⏟⏟
log(|𝑆|)

× 𝑛
𝛿

log(𝑛
𝛿
)

⏟⏟⏟⏟⏟
|𝑁|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Determining whether 𝐹∩𝑁∈𝒮

+ (𝑛
𝛿

log(𝑛
𝛿
))

𝑑

⏟⏟⏟⏟⏟⏟⏟
|𝑆|

× 𝑑 log(𝑛
𝛿

log(𝑛
𝛿
))

⏟⏟⏟⏟⏟⏟⏟
log(|𝑆|)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Adding 𝐹∩𝑁 to 𝒮 if 𝐹∩𝑁∉𝒮

= 𝑂(𝑚𝑑𝑛
𝛿

log(𝑛
𝛿
) + 𝑑𝑛𝑑

𝛿𝑑 log𝑑+1(𝑛
𝛿
)).

□

27

3 Previous work

The construction provided by Haussler to prove the optimality of Haussler’s packing lemma
exhibits the existence of VC-dimension 𝑑 set systems where minimal 𝛿-coverings have size
Θ((𝑛

𝛿)𝑑).

As we can see this algorithm is significantly faster than Algorithm 2. However the 𝛿-covering
it constructs might not be minimal. This is because the 𝛿

𝑛-net ensures that distant ranges will
have different intersections with the net. However, the converse is not true and pairs of ranges
close to each others might also have different intersections with the net. This leads to adding
pairs of ranges close to each other to the cover computed making it non-minimal.

Fast 𝛿-coverings for set systems spanned by halfspaces using cuttings.

In this section we present cuttings and how they can be used as an efficient tool to compute
𝛿-coverings of small size. This is a result from Matoušek [Mat92].

Definition 3.17. (Cuttings) Given a set 𝐻 of 𝑛 hyperplanes in ℝ𝑑, a 1
𝑟 -cutting for 𝐻 is

a collection of possibly unbounded 𝑑-dimensional closed simplices with disjoint interiors,
which together cover ℝ𝑑 and such that the interior of each simplex intersects at most 𝑛

𝑟
hyperplanes.

Theorem 3.18. ([Cha93]) There exists an algorithm that computes a 1
𝑟 -cutting of size

𝑂(𝑟𝑑) in time 𝑂(𝑛𝑟𝑑−1).

We introduce the set system corresponding in the dual vector space to a set system spanned by
halfspaces. This construction used on par with cuttings will give 𝛿-covering of small size.

Let (𝑋, ℱ) be a set system spanned by halfspaces in ℝ𝑑 and let (𝑌 , 𝒢) be the corresponding
set system in the dual vector space of (𝑋, ℱ)¹³.

The duality transform, that we denote dual(), is the function that, to a point 𝑥 ∈ ℝ𝑑
∗ , associates

the hyperplane {𝑥′ ∈ ℝ𝑑 : 𝑥′ · 𝑥 = 1} and,, to the hyperplane not passing through the origin
of the form {𝑥′ ∈ ℝ𝑑 : 𝑥′ · 𝑥 = 1}, the point 𝑥 ∈ ℝ𝑑

∗ .

(𝑌 , 𝒢) is defined as 𝑌 = {dual(𝐻𝐹) : 𝐹 ∈ ℱ} where 𝐻𝐹 is the hyperplane bounding the
halfspace 𝐹 and 𝒢 = {dual(𝑥) : 𝑥 ∈ 𝑋}.

Let 𝐻 be a hyperplane defined as {𝑥′ ∈ ℝ𝑑 : 𝑥′ · 𝑥 = 1} for 𝑥 ∈ ℝ𝑑
∗ . We call 𝐻+ the halfspace

bounded by H that does not contain the origin i.e. {𝑥′ ∈ ℝ𝑑 : 𝑥′ · 𝑥 > 1}. Similarly, we call
𝐻− the halfspace bounded by 𝐻 that contains the origin: {𝑥′ ∈ ℝ𝑑 : 𝑥′ · 𝑥 ≤ 1}.

The corresponding dual vector space admit some well-known properties that will be necessary
for the proof of the covering algorithm that we present below.

¹³This is a different notion than the dual set system presented in Definition 3.4.

28

3 Previous work

Lemma 3.19. Let 𝑥 ∈ ℝ𝑑 and 𝐻 be a hyperplane of ℝ𝑑:

• 𝑥 ∈ 𝐻 ⇔ dual(𝐻) ∈ dual(𝑥),
• 𝑥 ∈ 𝐻+ ⇔ dual(𝐻) ∈ dual(𝑥)+,
• 𝑥 ∈ 𝐻− ⇔ dual(𝐻) ∈ dual(𝑥)−.

For the sake of completeness, we restate the proof of these properties.

Proof of Lemma 3.19. We prove the first assertion.

Let 𝐻 = {𝑥′ ∈ ℝ𝑑 : 𝑥′ · 𝑦 = 1}, since 𝑥 ∈ 𝐻, 𝑥 · 𝑦 = 1.

In the dual space, dual(𝑥) = {𝑥′ ∈ ℝ𝑑 : 𝑥′ · 𝑦 = 1} and dual(𝐻) = 𝑦.

As 𝑥 · 𝑦 = 1, dual(𝐻) ∈ dual(𝑥).

The other two assertions are proved the same way. □

We now present the algorithm to compute 𝛿-coverings using cuttings first present by
Matoušek [Mat92].

Algorithm 4: Fast 𝛿-covering algorithm for halfspaces

Input: (𝑋, ℱ), 𝛿

1 (𝑌 , 𝒢) ← dual set system of (𝑋, ℱ)

2 Compute {𝐶1, …, 𝐶𝑟} a 𝛿
𝑛-cutting of (𝑌 , 𝒢) using Theorem 3.18

3 return {dual(𝑐1)
−, dual(𝑐1)

+, …, dual(𝑐𝑟)
−, dual(𝑐𝑟)

+} where 𝑐1 ∈ 𝐶1, …, 𝑐𝑟 ∈ 𝐶𝑟

Lemma 3.20. ([Mat92]) Let be (𝑋, ℱ) be a set system spanned by halfspaces in ℝ𝑑 and
𝛿 ∈ [1, 𝑛]. Algorithm 4 returns a 𝛿-covering of (𝑋, ℱ) of size 𝑂((𝑛

𝛿)𝑑) in time 𝑂(𝑑(𝑛 +
𝑚) + 𝑛𝑑 + 𝑚 log(𝑛)).

Proof. Let (𝑋, ℱ) be a set system spanned by halfspaces in ℝ𝑑 and let (𝑌 , 𝒢) be the corre-
sponding set system in the dual vector space of (𝑋, ℱ).

Let two points 𝑦, 𝑦′ ∈ 𝑌 and a hyperplane 𝐺 ∈ 𝒢. Suppose 𝑦 and 𝑦′ are on the two different
sides of 𝐺. By Lemma 3.19, we have 𝑥 ∈ dual(𝑦)− and 𝑥′ ∉ dual(𝑦′)− or 𝑥 ∈ dual(𝑦′)− and
𝑥′ ∉ dual(𝑦)− (the same goes for dual(𝑦)+ and dual(𝑦′)+). This mean that the number of
hyperplanes intersecting the segment between 𝑦 and 𝑦′ is the symmetric difference between
dual(𝑦)+ and dual(𝑦′)+ or dual(𝑦)− and dual(𝑦′)−.

By Theorem 3.18, we can compute {𝐶1, …, 𝐶𝑟} a 𝑛𝛿 -cutting of (𝑌 , 𝒢) with 𝑟 = 𝑂((𝑛
𝛿)𝑑). We

explain why {dual(𝑐1)
−, dual(𝑐1)

+, …, dual(𝑐𝑟)
−, dual(𝑐𝑟)

+} where 𝑐1 ∈ 𝐶1, …, 𝑐𝑟 ∈ 𝐶𝑟 is
a 𝛿-covering of (𝑋, ℱ).

29

3 Previous work

By Definition 3.17, for all 𝑘 ∈ [1, 𝑟], 𝐶𝑘 is intersected by at most 𝛿 hyperplanes of 𝒢. This
means that the segment between any two points inside 𝐶𝑘 can not be intersected by more
than 𝛿 hyperplanes. Therefore, the symmetric difference between two ranges 𝐹, 𝐹 ′ ∈ ℱ s.t.
dual(𝐻𝐹), dual(𝐻𝐹 ′) ∈ 𝐶𝑘 is bounded by 𝛿 if they have the same orientation.

Finally, for all 𝐹 ∈ ℱ, ∃𝑘 ∈ [1, 𝑟] s.t. dual(𝐻𝐹) ∈ 𝐶𝑘. That is, since 𝑐𝑘 and dual(𝐻𝐹) ∈ 𝐶𝑘,
Δ(𝐹, dual(𝑐𝑘)+) ≤ 𝛿 or Δ(𝐹, dual(𝑐𝑘)−) ≤ 𝛿 depending of 𝐻𝐹 ’s orientation.

Runtime analysis. Computing the dual vector space can be done in time 𝑑(𝑛 + 𝑚). Theorem
3.18 gives that computing a 𝑛

𝛿 -cutting can be done in time 𝑂(𝑛𝑑

𝛿𝑑−1). To be able to perform
point query in the cutting computed, one must perform a preprocessing with time complexity
𝑂(𝑛𝑑) [Cha93]. Then each query takes 𝑂(log(𝑛)) operations and might have to be performed
|𝑌 | = 𝑚 times bringing the total time complexity required to compute 𝑐1, …, 𝑐𝑟 from the
cutting to 𝑂(𝑛𝑑 + 𝑚 log(𝑛)). Adding the three steps together gives the time complexity stated
in the theorem. □

Remark 3.21. We can use two optimizations to reduce the time complexity of Algo-
rithm 4.

First, we do not need to compute the dual of ℱ as we do not need it to compute the cutting:
it is only required for the point query step.

Then instead of performing the query step with dual(ℱ), we can select 𝑐𝑘 to be an
arbitrary point of 𝐶𝑘 say the corner or the middle point of the cell. This requires to solve
a linear system of 𝑑 equations with 𝑑 unknowns that is 𝑂(𝑑3) operations. This gives an
improved total time complexity of 𝑂(𝑑𝑛 + 𝑛𝑑

𝛿𝑑−1 + 𝑑3(𝑛
𝛿)𝑑).

However the covering computed has no guarantee to be a sub-collection of ℱ but it will
be a collection of halfspaces.

The covering constructed might not be minimal. For instance some cells of the cutting might
be crossed by less than 𝛿 hyperplanes making the total number of hyperplanes cutting multiple
adjacent cells less than 𝛿. In that case selecting only one range for all these cells would cover
all the ranges in it. Nonetheless, the 𝛿-covering computed by Algorithm 2 has size 𝑂((𝑛

𝛿)𝑑)
matching the size of minimal 𝛿-coverings in the worst case.

Cuttings are an efficient tool to compute small 𝛿-coverings however their implementation
[Har00] is non-trivial, and is currently only available in ℝ2. This heavily limits the scope of
applications of algorithms using cuttings.

Weak 𝜀-coverings.

A weak 𝛿-covering 𝒞 of (𝑋, ℱ) is a sub-collection of ℱ such that for any one specific range
𝐹 ∈ ℱ, ∃𝐶 ∈ 𝒞 such that Δ(𝐹, 𝐶) ≤ 𝛿 however this might not be the case for all ranges 𝐹 ∈
ℱ simultaneously.

Matheny and Phillips studied weak 𝛿-coverings [MP19] and showed that it had application to
approximate discrepancy computation. This is different from the applications we present in

30

3 Previous work

the next section as, in that case, one wants to approximate the discrepancy of only one range:
the range with maximum discrepancy w.r.t. a given coloring.

The main application we will present of 𝛿-coverings is the computation of low-discrepancy
colorings. For that problem, it is not possible to use weak 𝛿-coverings as all we will be able
to ensure low-discrepancy only on ranges that are covered. That is, we need all ranges to be
covered simultaneously.

3.4 Combinatorial discrepancy
As presented in Chapter 1, combinatorial discrepancy is an important problem of combina-
torial data approximation. In this section, we will present algorithms on this problem. In
particular, we will detail the result of Lovett and Meka [LM15] that compute a low discrepancy
coloring of general set systems in polynomial time.

To start of, we show a well-known result: a random bound on the discrepancy of set systems
with a random coloring.

Lemma 3.22. Let (𝑋, ℱ) be a set system, and let 𝜒 be a uniform random coloring of 𝑋
that is for all 𝑥 ∈ 𝑋,

𝜒(𝑥) = {
1 with probability 1

2
−1 with probability 1

2

then

disc𝜒(𝑋, ℱ) = 𝑂(√𝑛 log(𝑚))

with probability at least 12 .

Proof. Let (𝑋, ℱ) be a set system and 𝜒 be a uniform random coloring of 𝑋. Let 𝐹 ∈ ℱ,

𝔼[𝜒(𝐹)] = ∑
𝑥∈𝐹

𝔼[𝜒(𝑥)] = ∑
𝑥∈𝐹

𝑃(𝜒(𝑥) = 1) − 𝑃(𝜒(𝑥) = −1) = 0.

By Hoeffding’s inequality:

𝑃(𝜒(𝐹) ≤ −√|𝐹 |
2

log(4)) < 1
4

and

𝑃(𝜒(𝐹) ≥ √|𝐹 |
2

log(4)) < 1
4
.

Using a union bound and using the bound for all 𝐹 ∈ ℱ, |𝐹 | ≤ 𝑛, we obtain:

𝑃(disc𝜒(𝑋, ℱ) ≥ √𝑛
2

log(4𝑚)) < 1
2
.

31

3 Previous work

□

Another formalization of the combinatorial discrepancy problem. A common way to
formalize the combinatorial discrepancy problem on finite set systems is to represent the
coloring 𝜒 as a vector 𝑥 ∈ {−1, 1}𝑛. In that case, denoting 𝑋 = {𝑥1, …, 𝑥𝑛}, we represent
the ranges 𝐹 ∈ ℱ by their indicator vectors 𝑣𝐹 ∈ {0, 1}𝑛 s.t.

𝑣𝐹 [𝑖] = {1 if 𝑥𝑖 ∈ 𝐹
0 otherwise

where 𝑣[𝑖] represents the 𝑖-th element of a vector 𝑣.

The discrepancy problem can then be written as finding 𝑥 ∈ {−1, 1}𝑛 such that

𝑥 = min
𝑦∈{−1,1}𝑛

max
𝐹∈ℱ

|𝑣𝐹 · 𝑦|.

This formalization of combinatorial discrepancy, allows for a more intuitive explanation of
partial colorings. Suppose a coloring 𝑥 where for all 𝑖 ∈ [1, 𝑛], |𝑥[𝑖]| = 1 − 𝜀 for some small
𝜀 > 0 achieves a small discrepancy 𝐷. Then the coloring 𝑦 with

𝑦[𝑖] = {1 if 𝑥[𝑖] = 1 − 𝜀
−1 otherwise

will have discrepancy at most 𝐷 + 𝜀𝑛¹⁴. We call these colorings, with some of their coefficients
in] − 1, 1[, partial colorings and we refer to the n-dimensional hypercube as the space of
colorings as it represents all possible colorings (partial and complete). This type of properties
have been used to compute small discrepancy colorings either by combining multiple partial
colorings or using them as intermediate colorings to obtain information on candidate final
colorings.

3.4.1 Low-discrepancy colorings for general set systems
For a fixed set system, finding a coloring with minimal discrepancy is NP-hard, in fact, simply
determining whether the discrepancy of a set system is 0 or not is NP-hard [CNN11]. The
main line of work on discrepancy has therefore been to find small but not necessarily minimal
discrepancy colorings. In particular Spencer [Spe85] proved the existence of colorings with
discrepancy 𝑂(

√
𝑛) for set systems with |ℱ| = 𝑂(𝑛) and more generally, set systems admit

colorings with discrepancy 𝑂(√𝑛 log(𝑚
𝑛)). Spencer’s result uses iterative partial coloring

of the ground set. However Spencer’s result is not constructive and, whether it was possible
to find a polynomial algorithm computing such coloring, remained an open problem for
nearly 25 years until Bansal’s breakthrough [Ban10]. Using Spencer’s partial coloring idea,
he proposed an algorithm that solves semi definite programs to guide a random walk in the
space of colorings.

The Lovett-Meka discrepancy algorithm.

¹⁴Using a more advanced probabilistic bounding techniques called “randomized rounding” we can even
reduce that error (see [RT87, You95]).

32

3 Previous work

Following up Bansal’s breakthrough, Lovett and Meka [LM15] designed a faster and simpler
algorithm to compute low-discrepancy colorings. The Lovett-Meka algorithm is a central tool
used in the contribution we present in Chapter 4 so we restate their result formally.

Algorithm 5: [LM15] small discrepancy coloring

Input: (𝑋, ℱ) ; 𝑐1, …, 𝑐𝑚 ∈ ℝ∗
+; 𝑥0 ∈ [−1, 1]𝑛

1 for 𝑡 ← 1 to 𝑇 = 8 log2(𝑚) do
2 𝐶var

𝑡 ← {𝑖 ∈ [1, 𝑛] : |𝑥𝑡−1[𝑖]| ≥ 1 − 1
8 log(𝑚)}

3 𝐶disc
𝑡 ← {𝐹 ∈ ℱ : |(𝑥𝑡−1 − 𝑥0) · 𝑣𝐹 | ≥ 𝑐𝑗 − 1

8 log(𝑚)}
4 𝑉𝑡 ← {𝑢 ∈ ℝ𝑛 : ∀𝑖 ∈ 𝐶var

𝑡 , 𝑢[𝑖] = 0 and ∀𝐹 ∈ 𝐶disc
𝑡 , 𝑢 · 𝑣𝐹 = 0}

5 𝑥𝑡 ← 𝑥𝑡−1 + 𝑈𝑡
16 log(𝑚) where 𝑈𝑡 is a standard Gaussian random variable in the space 𝑉𝑡

6 if ∃𝑖 ∈ [1, 𝑛] : |𝑥𝑡−1[𝑖]| > 1 or 𝐹 ∈ ℱ : |(𝑥𝑡−1 − 𝑥0) · 𝑣𝐹 | ≥ 𝑐𝑗 then
7 The algorithm fails
8 return 𝑥𝑇

This algorithm is surprisingly simple as it consists in a random walk where each additive
step is a random Gaussian vector in the space of colorings. The directions that the random
walk can have are subjected to some constraints. First there are constraints to ensure that
the coloring will remain in the space of coloring, that is the 𝑛-dimensional hypercube,
(𝐶var

𝑡). Then, additional constraints are needed to ensure that no range will have too large
discrepancy (𝐶disc

𝑡). To prevent the walk from violating any constraints, if the partial coloring
approaches a constraint, the algorithm enforces that the following steps are drawn from the
space orthogonal to that constraint (𝑉𝑡). This leads to a walk where the dimension of the space
from which the Gaussian vectors are drawn reduces over the course of the walk. In addition
to that there is a danger zone for each constraint. The Gaussian vectors are only drawn from
the space orthogonal to a constraint when it is in its danger zone rather than once it reaches
or exceeds it. The danger zone of a constraint i the strip of the coloring space close to the
constraint. If a random step makes the walk overtake a constraint then the algorithm fails,
however the probability of this happening is small.

We illustrate the walk from Algorithm 5 in Figure 7. We draw a walk in ℝ2 starting at the origin
with one range. The constraints associated with the hypercube are drawn in blue and the
danger zones associated are delimited by dashes and filled in blue. The constraint associated
with the range is drawn in red. We see that the walk first hit the red danger zone after what it
starts moving orthogonally to the constraint before hitting a blue danger zone and finishing
its course because it has no more dimension to move in.

33

3 Previous work

Figure 7: An illustration of the random walk from [LM15]

The following theorem is the main coloring theorem of [LM15].

Theorem 3.23. ([LM15] partial coloring theorem) Let 𝑣1, …, 𝑣𝑚 ∈ ℝ𝑛 and 𝑥0 ∈
[−1, 1]𝑛. Let 𝑐1, …, 𝑐𝑚 ≥ 0 such that ∑𝑚

𝑗=1 exp(−𝑐2
𝑗

16) ≤ 𝑛
16 . Algorithm 5 finds, with

probability at least 0.1, 𝑥 ∈ [−1, 1]𝑛 such that:

(i) ∀𝑗 ≤ 𝑚, |(𝑥 − 𝑥0) · 𝑣𝑗| ≤ 𝑐𝑗‖𝑣𝑗‖2
,

(ii) |{1 ≤ 𝑖 ≤ 𝑛 : |𝑥𝑖| ≥ 1 − 1
8 log(𝑚)}| ≥ 𝑛

2 .

Moreover this algorithm has runtime 𝑂((𝑛 + 𝑚)3 log3(𝑚)).

We detail this theorem as we will use some of its properties in Chapter 4 and Chapter 6.

Property (i) states that, given a set system, a starting point and a budget for each range of the
set system, Algorithm 5 returns a coloring of 𝑋 with discrepancy proportional to the budget
for each range. Naturally, there is a total budget limit and it is not possible to have a large
budget for each range. This is represented by the inequality

∑
𝑚

𝑗=1
exp(−

𝑐2
𝑗

16
) ≤ 𝑛

16

that we call the entropy condition of Theorem 3.23. However if all ranges get the same budget,
we see that we can have a budget of 𝑂(log(𝑚

𝑛)) per range which means that the coloring
returned has discrepancy 𝑂(√𝑛 log(𝑚

𝑛)).

34

3 Previous work

Property (ii) means that after running the algorithm, at least half of the elements of 𝑋 will be
colored. This means that Algorithm 5 might need to be ran log(𝑛) times to obtain a complete
coloring. This is possible as the starting point of the walk is flexible and we can restart each
run where the previous one ended.

We detail this process. Algorithm 5 with 𝑥1
0 = 0ℝ𝑛 and constraints 𝑐1

1, …, 𝑐1
𝑚 returns a partial

coloring 𝑥1. Then, running Algorithm 5 again on only the remaining—at most 𝑛
2 —uncolored

points and starting from 𝑥2
0 = 𝑥1 with constraints 𝑐2

1, …, 𝑐2
𝑚 returns a second coloring 𝑥2.

This is done by effectively setting the indices of colored elements to 0 in all 𝑣𝑗. Doing this
log(𝑛) times returns 𝑥log(𝑛), a complete coloring, and we have:

∀𝑗, |𝑥log(𝑛) · 𝑣𝑗| = |(𝑥log(𝑛) − 0ℝ𝑛) · 𝑣𝑗|

= |(𝑥log(𝑛) − 𝑥log(𝑛)−1 + 𝑥log(𝑛)−1 − 𝑥log(𝑛)−2 + … + 𝑥1 − 0ℝ𝑛) · 𝑣𝑗|

≤ |(𝑥log(𝑛) − 𝑥log(𝑛)−1) · 𝑣𝑗| + … + |(𝑥1 − 0ℝ𝑛) · 𝑣𝑗|. (1)

However at each step, we remove at least half of the elements of 𝑋 that have been colored
during this step, which means that for all 𝑗, at most 𝑛

2𝑘 elements of 𝑣𝑗 are non-zero, thus
‖𝑣𝑗‖2

≤ √ 𝑛
2𝑘 . Using this result with property (i) of Theorem 3.23 gives

∀𝑘, |(𝑥𝑘 − 𝑥𝑘−1) · 𝑣𝑗| ≤ 𝑐𝑘
𝑗 √ 𝑛

2𝑘 .

Using this in (1) gives:

∀𝑗, |𝑥log(𝑛) · 𝑣𝑗| = ∑
log(𝑛)

𝑘=1
𝑐𝑘
𝑗 √ 𝑛

2𝑘 .

In particular when setting for all 𝑗 ∈ [1, 𝑚], 𝑐𝑘
𝑗 = 𝑂(√log(𝑚2𝑘

𝑛)), we obtain:

∀𝑗, |𝑥log(𝑛) · 𝑣𝑗| = ∑
log(𝑛)

𝑘=1
𝑂

(
(((
(√𝑛 log(𝑚2𝑘

𝑛)
2𝑘

)
)))
)

= 𝑂(√𝑛 log(𝑚
𝑛

)).

With this technique, we obtain a complete coloring with discrepancy of the same order as the
first partial coloring obtained with Algorithm 5. This generalizes to any choice of 𝑐1, …, 𝑐𝑚.

Next we present a lemma that shows how Algorithm 5 colors subsets of 𝑋 that are not
used as constraints. In fact any subset of 𝑋 will be colored and it turns out the discrepancy
of these subsets will be the same as if they had been colored randomly, that is discrepancy
𝑂(√𝑛 log(𝑚𝑛)) with constant probability.

Lemma 3.24. ([LM15] random coloring) For all 𝑣 ∈ {0, 1}𝑛, 𝑐 > 0, let 𝑥 be the coloring
returned by Algorithm 5((𝑋, ℱ),𝑥0) for 𝑥0 ∈ [−1, 1]𝑛, then

𝑃(|(𝑥 − 𝑥0) · 𝑣| ≥
√

8𝑐‖𝑣‖2 log(𝑚)) ≤ 2 exp(−𝑐2

2
).

35

3 Previous work

Proof. Bansal shows in his work [Ban10] a key result on martingale that we restate.

Lemma ([Ban10]) Let 𝑋0, 𝑋1, …, 𝑋𝑇 be a martingale with increments 𝑌𝑖 = 𝑋𝑖 − 𝑋𝑖−1.
Suppose for 𝑖 ∈ [1, 𝑇], we have that the conditional distribution of 𝑌𝑖 given (𝑋𝑖−1, ⋯, 𝑋0) is
Gaussian with mean 0 and variance at most 1. Then for all 𝑐 > 0,

𝑃(|𝑋𝑇 − 𝑋0| ≥ 𝑐
√

𝑇) ≤ 2 exp(−𝑐2

2
).

In Algorithm 5, at all iterations 𝑡, 𝑥𝑡 − 𝑥𝑡−1 = 𝑈𝑡
16 log(𝑚) and the conditional distribution of

𝑈𝑡
16 log(𝑚) given (𝑥𝑡−1, ⋯, 𝑥0) is Gaussian with mean 0 and variance at most 1.

Let 𝑣 ∈ {0, 1}𝑛. At all iterations 𝑡, (𝑥𝑡 − 𝑥𝑡−1) · 𝑣
‖𝑣‖2

= 𝑈𝑡·𝑣
16‖𝑣‖2 log(𝑚) and the conditional distri-

bution of 𝑈𝑡·𝑣
16‖𝑣‖2 log(𝑚) given (𝑥𝑡−1, ⋯, 𝑥0) is Gaussian with mean 0 and variance at most 1 as

it is a normalized sum of Gaussian random variables with mean 0 and variance at most 1.

Using Bansal’s result, we obtain for all 𝑐 > 0,

𝑃(|(𝑥√
8 log(𝑚) − 𝑥0) · 𝑣| ≥

√
8𝑐‖𝑣‖2 log(𝑚))

= 𝑃(|(𝑥√
8 log(𝑚) − 𝑥0) · 𝑣

‖𝑣‖2
| ≥

√
8𝑐 log(𝑚))

≤ 2 exp(−𝑐2

2
).

□

Corollary 3.25. For all 𝑣 ∈ {0, 1}𝑛, let 𝑥1, …, 𝑥log(𝑛) be the colorings returned by Algo-
rithm 5 by running it iteratively, then for all 𝜈 > 0,

𝑃
(
((|𝑥log(𝑛) · 𝑣| ≥ 4‖𝑣‖2 log(𝑚) log(𝑛)√ln(𝑚𝑛log(𝑛)

𝜈
)

)
)) ≤ 2𝜈

𝑚𝑛
.

Proof. The algorithm is ran log(𝑛) times to obtain a complete coloring 𝑥log(𝑛). The final
discrepancy becomes:

|𝑥log(𝑛) · 𝑣| = |(𝑥log(𝑛) − 0ℝ𝑛) · 𝑣|

= |(𝑥log(𝑛) − 𝑥log(𝑛)−1 + 𝑥log(𝑛)−1 − 𝑥log(𝑛)−2 + … + 𝑥1 − 0ℝ𝑛) · 𝑣|

≤ |(𝑥log(𝑛) − 𝑥log(𝑛)−1) · 𝑣| + |(𝑥log(𝑛)−1 − 𝑥log(𝑛)−2) · 𝑣| + … + |(𝑥1 − 0ℝ𝑛) · 𝑣|.

Lemma 3.24 with a family of coefficients (𝑐𝑘)1≤𝑘≤ log(𝑛) > 0 gives,

𝑃
(
((|𝑥log(𝑛) · 𝑣| ≥ ∑

log(𝑛)

𝑘=1

√
8𝑐𝑘‖𝑣‖2 log(𝑚)

)
)) ≤ 2 ∑

log(𝑛)

𝑘=1
exp(−𝑐2

𝑘
2

).

36

3 Previous work

In particular, with for all 𝑘 ∈ [1, log(𝑛)], 𝑐𝑘 = √2 ln(𝑚𝑛 log(𝑛)
𝜈) in the previous equation, we

obtain:

𝑃
(
((|𝑥log(𝑛) · 𝑣| ≥ 4‖𝑣‖2 log(𝑚) log(𝑛)√ln(𝑚𝑛log(𝑛)

𝜈
)

)
)) ≤ 2𝜈

𝑚𝑛
.

□

Remark 3.26. It is important for this result to depend on the norm of 𝑣 as the applications
we present in Chapter 4 and Chapter 6 will require this. This is why we can not apply the
same technique to obtain a geometric sum when summing over the different runs of the
algorithm. This would result in a dependence in 𝑛 instead of ‖𝑣‖2 as it might be that, in
between two runs, no non-zero coefficient of 𝑣 is colored in particular if ‖𝑣‖2 is small.

Despite Algorithm 5 being stochastic, in the next sections, for simplification purpose, we do
not handle its success probability and assume that it succeeds all the times. This is a standard
practice that can be applied to any stochastic algorithm. Suppose a stochastic algorithm has
a probability of success of 1

𝑎 for some 𝑎 > 1. Then in expectation, we obtain a successful run
of such algorithm for every 𝑎 runs of the algorithm. Therefore running the algorithm until
obtaining a successful run of the algorithm has an expected time complexity of 𝑎 times the
time complexity of the algorithm.

This type of algorithms are called Monte Carlo algorithm as they return the right solution with
a given probability. The procedure described above is what is called a Las Vegas algorithm. This
means that the procedure returns the right solution with probability 1 but the resources that
will be used are unknown. The procedure is also the natural way to transform a Monte Carlo
algorithm into a Las Vegas algorithm. By replacing a Monte Carlo algorithm by its Las Vegas
counterpart we can ensure a probability of success of 1 but the time complexity given will be
the expected time complexity and will be multiplied by the inverse of the success probability
as explained above.¹⁵

Algorithm 5′s success probability is 𝑂(1
log(𝑛)), therefore we can expect to obtain a successful

run in a logarithmic number of runs. Therefore, by using its Las Vegas counterpart, we have an
algorithm that returns a coloring with the discrepancy chosen as input for its constraint range
and expected time complexity 𝑂̃((𝑛 + 𝑚)3). However, this does not change the probability
of Corollary 3.25 that we will bound and will play a role in the success probability of the
algorithms we present.

Other related works on low-discrepancy colorings algorithms.

Levy, Ramadas and Rothvoss [LRR17] proposed a derandomization of Lovett and Meka’s work
using the Multiplicative Weight Update technique with runtime 𝑂̃(𝑛4𝑚). The major issue
with these algorithms is their dependence on 𝑚, as in general 𝑚 ≫ 𝑛. This field of research
is very active and has seen various improvements such as a no partial coloring algorithm

¹⁵See section 3.5 of [MU17] for a more detailed example.

37

3 Previous work

[HSS14] and algorithms for different type of set systems such as low-degree set systems
[BM20] or sparse set systems [JSS23].

A related problem of the combinatorial discrepancy problem is the 𝑙∞-discrepancy problem.
𝐴 is a given 𝑚 × 𝑛 matrix. The goal is to find 𝑥 ∈ {−1, 1}𝑛 so as to minimize ‖𝐴𝑥‖∞. We
recover the set discrepancy problem when the coefficients of 𝐴 are either 0 or 1. In that case
the columns of 𝐴 are the indicator vectors of each set. Some work has been done on solving
this problem with random walks [BDG19, Ban+19]. Recently some combinatorial algorithm
[Gre23] and some optimization algorithm [DSW22] lowered runtime on that line of study to
𝑂(nnz(𝐴) + 𝑛2.53).

3.4.2 Low-discrepancy coloring colorings of finite VC-dimension set systems
The results presented so far apply to general set systems. However, when working with finite
VC-dimension set systems, it is possible to improve them.

Matoušek, Welzl and Wernisch proved in [MWW93] that finite VC-dimension set system ad-
mit colorings with discrepancy of order 𝑂(𝑛1

2− 1
2𝑑 log(𝑚)). This result was further improved

in [Mat95] to 𝑂(𝑛1
2− 1

2𝑑) which is optimal [BC86].

The first result rely on the partial coloring lemma due to Beck [Bec81], that we state below.

Theorem 3.27. ([Bec81]) Let (𝑋, ℱ) be a set system and 𝒢 a collection of subsets of X
s.t. for all 𝐺 ∈ 𝒢, |𝐺| ≤ 𝑠 and

∏
𝐹∈ℱ

(|𝐹 | + 1) ≤ 2𝑛−1
5

then there exists a partial coloring 𝜒 : 𝑋 → {−1, 0, 1} such that at least 𝑛
10 elements of

𝑋 are colored and for all 𝐹 ∈ ℱ, 𝜒(𝐹) = 0 and for all 𝐺 ∈ 𝒢, |𝜒(𝐺)| ≤ √2𝑠 ln(4|𝒢|).

We first explain how to obtain the bound of [MWW93] using [Bec81].

Let (𝑋, ℱ) be a set system with finite VC-dimension 𝑑 and 𝐾 a large constant in ℝ. By
Haussler’s packing lemma, there exists a 𝐾𝑛1−1

𝑑 log1
𝑑 (𝑛)-covering 𝒞 of (𝑋, ℱ) with size

𝑂
(
((
(𝑛𝑑

(𝑛1−1
𝑑 log1

𝑑 (𝑛))
𝑑
)
))
) = 𝑂(𝑛

log(𝑛)
).

Let 𝒢 = {𝐹 \ 𝐶𝐹 : 𝐹 ∈ ℱ} ∪ {𝐶𝐹 \ 𝐹 : 𝐹 ∈ ℱ} where

𝐶𝐹 ∈ 𝒞 s.t. |Δ(𝐹 , 𝐶𝐹)| ≤ 𝐾𝑛1−1
𝑑 log1

𝑑 (𝑛).

It is possible to apply [Bec81] with 𝒞 and 𝒢 as 𝑛
𝑛

log(𝑛) = 𝑂(2𝑛) which means that for a large
enough 𝐾 , the condition of [Bec81] is respected. This gives a coloring 𝜒 such that for all 𝐶 ∈
𝒞, 𝜒(𝐶) = 0 and for all 𝐺 ∈ 𝒢, |𝜒(𝐺)| ≤ √2𝐾𝑛1−1

𝑑 log1
𝑑 (𝑛) ln(4|𝒢|) ≤ √4𝐾𝑛1−1

𝑑 ln(8𝑚).
This means that for all 𝐹 ∈ 𝐹 ,

38

3 Previous work

𝜒(𝐹) ≤ 𝜒(𝐶𝐹)⏟
=0

+ 𝜒
(
((
(𝐹 \ 𝐶𝐹⏟

∈𝒢)
))
) + 𝜒

(
((
(𝐶𝐹 \ 𝐹⏟

∈𝒢)
))
) ≤ 2√4𝐾𝑛1−1

𝑑 ln(8𝑚).

To remove the log factor from the result of [MWW93], Matoušek used a technique called
chaining. The idea behind this technique is to compute a family of coverings of different size
to bound the discrepancy of the error sets, i.e., the difference between the sets from 𝒞 and the
ranges of ℱ.

To do so, we need to overcome a limitation of [Bec81]: it only uses two collections of sets.
Among these two collections, one of them will have discrepancy 0 with respect to the coloring.
This can be generalized to multiple collections of sets that obtain a discrepancy determined
by some budget. This idea resulted in a theorem called the entropy method and was suggested
by Boppana to simplify [Spe85] result.

Theorem 3.28. (Entropy method) Let (𝑋, ℱ) be a set system and for all 𝐹 ∈ ℱ, let
𝑐𝐹 > 0. If, for some absolute constant 𝐾 ∈ ℝ,

∑
𝐹∈ℱ

𝐾 exp(− 𝑐2
𝐹

4|𝐹 |
) log(2 +

√|𝐹 |
𝑐𝐹

) < 𝑛
5
,

then there exists a coloring 𝜒 of 𝑋 s.t. for all 𝐹 ∈ ℱ, |𝜒(𝐹)| < 𝑐𝐹 .

This theorem is very similar to Theorem 3.23. In fact, in a way, Theorem 3.23 is the constructive
version of Theorem 3.28 that is purely existential. In the same way than Theorem 3.23, there
is a total budget that depends on a function of the discrepancy that we want in the coloring
and the size of each set.

We explain the result of [Mat95] to improve the discrepancy bound from 𝑂(𝑛1
2− 1

2𝑑 log 1
2𝑑 (𝑚))

to 𝑂(𝑛1
2− 1

2𝑑).

Let 𝒞1, …, 𝒞log(𝑛) where for all 𝑖 ∈ [1, log(𝑛)], 𝒞𝑖 is a maximal 𝑛
2𝑖 -packing of (𝑋, ℱ) and 𝒞𝑖 ⊆

ℱ. In particular, 𝐶log(𝑛) = ℱ and we set 𝐶0 = ∅. By Haussler’s packing lemma, for all

𝑖 ∈ [1, log(𝑛)], |𝒞𝑖| = 𝑂(2𝑑𝑖).

We have

∀𝐶 ∈ 𝒞𝑖, ∃𝐶′ ∈ 𝒞𝑖−1 s.t. |Δ(𝐶, 𝐶′)| ≤ 𝑛
2𝑖 ..

since 𝒞𝑖−1 is a 𝑛
2𝑖−1 -covering of ℱ and 𝒞𝑖 ⊆ ℱ.

Remark 3.29. The fact that every covering is a sub collection of ℱ is essential here as it
ensures that no new range to cover is introduced at any level of the chaining process. It
also ensures that the 𝑖th covering of the chaining process will be a covering of all other
coverings computed in previous steps. In particular this exclude computing fast packings
from cuttings as explained in Remark 3.21.

39

3 Previous work

Let 𝒢𝑖 = {𝐶 \ 𝐶′ : 𝐶 ∈ 𝒞𝑖} ∪ {𝐶′ \ 𝐶 : 𝐶 ∈ 𝒞𝑖} where

𝐶′ ∈ 𝒞𝑖−1 s.t. |Δ(𝐶, 𝐶′)| ≤ 𝑛
2𝑖−1 .

We apply Theorem 3.28 with

∀𝐶 ∈ 𝒞𝑖, 𝑐𝐶 = 𝐾1
𝑛1

2− 1
2𝑑

(1 + |𝑖 − log(𝑛)
𝑑 |)

2

for some large constant 𝐾1 to obtain a coloring 𝜒 s.t.

∀𝐶 ∈ 𝒞𝑖, |𝜒(𝐶)| < 𝐾1
𝑛1

2− 1
2𝑑

(1 + |𝑖 − log(𝑛)
𝑑 |)

2 .

The computational details of why this choice of 𝑐𝐶 satisfies the condition of Theorem 3.28
can be read in Section 5.5 of [Mat99].

We compute the discrepancy of this coloring on the ranges. Every range can be written as the
sum of the errors between sets from the packings:

∀𝐹 ∈ ℱ, ∃𝐶1, 𝐶′
1 ∈ 𝒞1, …, 𝐶log(𝑛), 𝐶′

log(𝑛) ∈ 𝒞log(𝑛) s.t.

𝐹 = (…(((𝐶1 \ 𝐶′
1) ∪ 𝐶2) \ 𝐶′

2) ∪ … ∪ 𝐶log(𝑛)) \ 𝐶′
log(𝑛).

This gives:

𝜒(𝐹) ≤ ∑
log(𝑛)

𝑖=1
𝜒(𝐶𝑖) + 𝜒(𝐶′

𝑖)

≤ 2𝐾1𝑛
1
2− 1

2𝑑 ∑
log(𝑛)

𝑖=1

1

(1 + |𝑖 − log(𝑛)
𝑑 |)

2

≤ 4𝐾1𝑛
1
2− 1

2𝑑 ∑
∞

𝑖=1

1
(1 + 𝑖)2

= 2𝐾1𝜋2𝑛1
2− 1

2𝑑

3
.

3.4.3 Combinatorial games about discrepancy
In Chapter 4, we introduce a new combinatorial game related to discrepancy. Combinatorial
games is an important topic with applications to many problems¹⁶. In particular the work of
Alon, Krivelevich, Spencer and Szabó [Alo+05] studies the combinatorial discrepancy problem
as a game. In their game the two players will chose alternatively an element of the ground set
of a set system.

The goal for the first player, called the balancer, is to finish the game with approximately
half of the elements of each range of the set system. The goal for the other player, called the

¹⁶See [Fra12] for a general survey on combinatorial games.

40

3 Previous work

unbalancer, is to avoid this situation. The authors show the existence of a winning strategy
for the balancer if the approximation error allowed to win the game is large enough.

This game relates to discrepancy as the two players can be seen as the two colors to define
a coloring. The approximation error obtained by the balancer will be the discrepancy of the
coloring defined by the choices of the two players.

The game we present in Chapter 4 is very different from this one as the two players are not
in competition to chose their respective objects. In [Alo+05], the two players chose elements
from the same ground set and the choice of one element will prevent the other player from
choosing the same element at a later stage of the game. In our game, the two players are
choosing different types of objects: the first player chooses coloring and the second player
ranges. This leads to an easier analysis of strategies as the strategies of our two players do not
necessarily depend on each others.

3.5 Simplicial partitions
In this section, we present some work on simplicial partitions that we introduced in Chapter 1
under their parameterized name: (𝑡, 𝜅)-partitions. The study of (𝑡, 𝜅)-partitions originated
in computational geometry in the late 1980s, under the name simplicial partitions. A break-
through result that established a key bound, as well as their significance, is the result from
Matoušek [Mat92] who gave a construction of simplicial partitions using cuttings (cf Defin-
ition 3.17).

Algorithm 6: [Mat92] simplicial partition algorithm

Input: (𝑋, ℋ), 𝑡 ∈ [2, 𝑛
2]

1 ∀𝐻 ∈ ℋ, 𝜋0(𝐻) ← 1
2 for 𝑖 ← 0 to 𝑡 − 1 do
3 𝑄𝑖 ← 𝑋 \ (∪𝑖

𝑘=1 𝑃𝑘)

4 ℋ𝜋𝑖 ← ⋃
𝐻∈ℋ{{

{
{{

𝐻, …, 𝐻⏟
𝜋𝑖(𝐻) times}}

}
}}

 (this is a multiset)

5 𝐶𝑖 ←cutting of (𝑄𝑖, ℋ𝜋𝑖) with at most 𝑡|𝑄
𝑖|

𝑛 cells
6 𝑃𝑖+1 ← 𝑛

𝑡 elements of a cell of 𝐶
7 ∀𝐻 ∈ ℋ, 𝜋𝑖+1(𝐻) ← 𝜋𝑖(𝐻) × 2𝐼(𝑃𝑖+1,𝐻)

8 return 𝑃1, …𝑃𝑡

Overview of the algorithm. This algorithm successively constructs the parts of the partition.
It relies on Multiplicative Weight Update (MWU). This means maintaining weights on each
range that evolves exponentially with the crossing number of the range. After each part is
constructed, it doubles the weight of ranges that cross it. This idea allows to maintain all
ranges’ crossing number of similar order as if one range was to be intersected more than the
others it would be avoided in the next iterations even at the cost of intersecting many other
range. This idea has been applied to design a wide variety of algorithms (see [AHK12] for
more details).

41

3 Previous work

To construct the 𝑖-th part, the algorithm will compute a cutting with at most 𝑡|𝑄
𝑖|

𝑛 cells, that is

an 𝑂((𝑛
𝑡|𝑄𝑖|)

1
𝑑)-cutting of (𝑄𝑖, ℋ𝜋𝑖) where 𝑄𝑖 contains the elements of 𝑋 that have not

been assigned to parts 1 to 𝑖 − 1 and ℋ𝜋𝑖 is the multiset of all hyperplanes 𝐻 ∈ ℋ repeated
𝜋𝑖(𝐻) times. The part will then be constructed by choosing 𝑛

𝑡 arbitrary elements in one cell
of the cutting.

Theorem 3.30. ([Mat92]) Given a set 𝑋 of 𝑛 elements in ℝ𝑑, let ℋ denote the family
of hyperplanes induced by 𝑋. That is, the collection of all hyperplanes defined by at least
𝑑 + 1 elements of 𝑋. Then for any integer parameter 𝑡 ∈ [2, 𝑛

2], Algorithm 6 computes
a (𝑡, 𝑂(log(𝑚) + 𝑡1−1

𝑑))-partition of the set system on 𝑋 induced by the halfspaces
defined by ℋ.

Proof. Suppose we have constructed parts 1, …, 𝑖 − 1.

The cutting 𝐶𝑖 has size 𝑡|𝑄𝑖|
𝑛 therefore, by the pigeonhole principle, there exists at least one

cell of 𝐶𝑖 with at least 𝑛𝑡 points.

for all 𝐻 ∈ ℋ, 𝜋𝑖(𝐻) = 2∑𝑖
𝑘=1 𝐼(𝑃𝑘,𝐻), thus:

max
𝐻∈ℋ

∑
𝑖

𝑘=1
𝐼(𝑃𝑘, 𝐻) ≤ log(∑

𝐻∈ℋ
𝜋𝑖(𝐻)). (2)

We want to evaluate the increase factor of 𝜋𝑖(ℋ) ≔ ∑𝐻∈ℋ 𝜋𝑖(𝐻) between each iteration.
The hyperplanes which weight increases between two iterations are the hyperplanes inter-
secting the cell from which we select the 𝑛

𝑡 points. This means that their number is bounded

by Theorem 3.18: 𝐶𝑖 is an 𝑂((𝑛
𝑡|𝑄𝑖|)

1
𝑑)-cutting, therefore, its cells are intersected by at most

𝐶|ℋ𝜋𝑖 |𝑛
1
𝑑

𝑡
1
𝑑 |𝑄𝑖|

1
𝑑

 hyperplanes for some constant 𝐶 . This gives the following induction formula on

𝜋𝑖(ℋ).

𝜋𝑖+1(ℋ) ≤ 𝜋𝑖(ℋ) + 𝐶|ℋ𝜋𝑖 |𝑛1
𝑑

𝑡1
𝑑 |𝑄𝑖|1

𝑑

= 𝜋𝑖(ℋ) + 𝐶𝜋𝑖(ℋ)𝑛1
𝑑

𝑡1
𝑑 (𝑛 − 𝑖𝑛

𝑡)
1
𝑑

= 𝜋0(ℋ) ∏
𝑖

𝑘=0(
(((1 + 𝐶𝑛1

𝑑

𝑡1
𝑑 (𝑛 − 𝑘𝑛

𝑡)
1
𝑑
)
)))

= 𝜋0(ℋ) ∏
𝑖

𝑘=0
(1 + 𝐶

(𝑡 − 𝑘)1
𝑑
).

Using the inequality log(1 + 𝑥) ≤ 𝑥, we obtain

42

3 Previous work

log(𝜋𝑡(ℱ)) ≤ log(𝜋0(ℱ)) + ∑
𝑡

𝑘=1

1
𝑘1

𝑑

= 𝑂(log(𝑚) + 𝑡1−1
𝑑).

Using this result in (2) finishes the proof. □

An important open problem related of simplicial partitions is that the exact class of set systems
admitting low-crossing partitions is unknown. Their existence have been demonstrated for
complex set systems such as semi-algebraic set systems [AMS13].

However, not all set systems—even very simple geometric ones—admit partitions for all para-
meters 𝑡. Alon, Haussler and Welzl [AHW87] showed that for 𝑡 = 𝑂(

√
𝑛), finite projective

planes do not admit partitions of size 𝑡 with sublinear crossing number even though these set
systems have VC-dimension 2.

3.6 Computing 𝜀-approximation with sub quadratic size in finite VC-
dimension

As presented in Section 3.2.2, it is possible to construct an 𝜀-approximation of a set system
(𝑋, ℱ) with finite VC-dimension by simply sampling uniformly 𝑋. This results in 𝜀-approx-
imation of size 𝑂(𝑑

𝜀2) where 𝑑 is the VC-dimension of (𝑋, ℱ). It is possible to achieve smaller
𝜀-approximations by sampling 𝑋 non-uniformly. In this section, we present results showing
how to guide sampling to achieve 𝜀-approximation of size 𝑂(𝑑

𝜀
2𝑑

𝑑+1
). First we use simplicial

partitions and second combinatorial discrepancy.

3.6.1 Simplicial partitions
Simplicial partitions can be used to compute sub-quadratic sized 𝜀-approximations (see
Section 3.2.2 for the definition and more details).

The following theorem from Suri, Toth and Zhou shows that the existence of low-crossing
partition implies the existence of small 𝜀-approximations.

Lemma 3.31. ([STZ06]) Let 𝒫 = {𝑃1, …, 𝑃𝑡} be a (𝑡, 𝑡1−1
𝑑)-partition of a sets system

(𝑋, ℱ), then a set 𝐴 = {𝑥1, …, 𝑥𝑟} ⊆ 𝑋 such that 𝑥1, …, 𝑥𝑡 are selected uniformly at
random respectively in 𝑃1, …, 𝑃𝑡 is a 𝑂((1

𝑡)
𝑑+1
2𝑑 √ln(𝑚))-approximation of (𝑋, ℱ) with

probability at least 12 .

Proof. Let 𝐴 ∈ 𝑋 constructed as in Lemma 3.31′s statement. Let 𝐹 ∈ ℱ. A part that does not
intersect 𝐹 does not contribute to the approximation error as the possible choices of elements
from 𝐴:

43

3 Previous work

| |𝐹 ∩ 𝐴|
|𝐴|

− |𝐹 |
|𝑋|

| = |
∑𝑡

𝑖=1 𝟙𝑥𝑖∈𝐹

|𝐴|
− |𝐹 ∩ 𝑃1| + … + |𝐹 ∩ 𝑃𝑡|

|𝑋|
|

= |∑
𝑖∈𝐼

𝟙𝑥𝑖∈𝐹

|𝐴|
− |𝐹 ∩ 𝑃𝑖|

|𝑋|
+ ∑

𝑖∈[1,𝑡]\𝐼

𝟙𝑥𝑖∈𝐹

|𝐴|
− |𝐹 ∩ 𝑃𝑖|

|𝑋|
|.

where 𝐼 is the set of indices 𝑖 ∈ [1, 𝑡] such that 𝐹 intersects 𝑃𝑖.

Parts 𝑃𝑖 such that 𝑖 ∉ 𝐼 are of two types:

• Either 𝑃𝑖 ⊆ 𝐹 , in that case 𝟙𝑥𝑖∈𝐹 = 1 and 𝐹 ∩ 𝑃𝑖 = 𝑃𝑖, that is:
𝟙𝑥𝑖∈𝐹

|𝐴| − |𝐹∩𝑃𝑖|
|𝑋| = 1

𝑡 −
𝑛
𝑡
𝑛 = 0.

• Either 𝑃𝑖 ∩ 𝐹 = ∅, in that case 𝟙𝑥𝑖∈𝐹 = 0, that is:
𝟙𝑥𝑖∈𝐹

|𝐴| − |𝐹∩𝑃𝑖|
|𝑋| = 0.

Thus:

| |𝐹 ∩ 𝐴|
|𝐴|

− |𝐹 |
|𝑋|

| = |∑
𝑖∈𝐼

𝟙𝑥𝑖∈𝐹

|𝐴|
− |𝐹 ∩ 𝑃𝑖|

|𝑋|
|.

Since 𝒫 is a (𝑡, 𝑡1−1
𝑑)-partition, |𝐼| ≤ 𝑡1−1

𝑑 .

The error coming from each part 𝑃𝑖 with 𝑖 ∈ 𝐼 are independent bounded random variables in
the range [0, 2𝑛

𝑡]. That is, by Hoeffding’s inequality, we have:

𝑃(|∑
𝑖∈𝐼

𝟙𝑥𝑖∈𝐹 |𝑋|
|𝐴|

− |𝐹 ∩ 𝑃𝑖|| ≥ 𝜀𝑛) ≤ 2 exp
(
((− 2𝜀2𝑛2

𝑡1−1
𝑑 (2𝑛

𝑡)2
)
))

= 2 exp(−𝜀2𝑡1+1
𝑑

2
).

That is with 𝜀 = √2 ln(4𝑚)

𝑡
𝑑+1
2𝑑

:

𝑃(|∑
𝑖∈𝐼

𝟙𝑥𝑖∈𝐹 |𝑋|
|𝐴|

− |𝐹 ∩ 𝑃𝑖|| ≥ 𝜀𝑛) ≤ 1
2𝑚

.

A union bound over all ranges of ℱ finishes the proof. □

3.6.2 Low-discrepancy colorings
In this section we present how to compute small 𝜀-approximation from low discrepancy
colorings. In particular we will examine the following algorithm that computes an 𝜀-approxi-
mation of a set system (𝑋, ℱ) given a coloring algorithm 𝚊𝚕𝚐𝚘. This result is a generalization
of ideas presented by Matoušek and Chazelle in [CM96].

44

3 Previous work

Algorithm 7: Iterated Halving Algorithm

Input: (𝑋, ℱ), 𝑡, 𝚊𝚕𝚐𝚘 : (𝑌 , 𝒢) → (𝜒 : 𝑌 → {−1, 1})
1 (𝑋0, ℱ0) = (𝑋, ℱ)
2 for 𝑖 ← 0 to 𝑡 − 1 do
3 𝜒𝑖 ← 𝚊𝚕𝚐𝚘(𝑋𝑖, 𝑌𝑖)
4 𝑋+

𝑖 ← {𝑥 ∈ 𝑋𝑖 : 𝜒𝑖(𝑥) = +1}
5 𝑋−

𝑖 ← {𝑥 ∈ 𝑋𝑖 : 𝜒𝑖(𝑥) = −1}
6 if |𝑋+

𝑖 | ≥ |𝑋𝑖|
2 then

7 𝑋𝑖+1 ← arbitrary subset of 𝑋+
𝑖 of size |𝑋𝑖|

2
8 else
9 𝑋𝑖+1 ← arbitrary subset of 𝑋−

𝑖 of size |𝑋𝑖|
2

10 ℱ𝑖+1 ← ℱ𝑖|𝑋𝑖+1

11 return 𝑋log(𝑡)

At each iteration, this algorithm computes a coloring using 𝚊𝚕𝚐𝚘. Then it selects half of the
points that have been colored with the majority color. If the coloring returned by 𝚊𝚕𝚐𝚘 has
small discrepancy, the points with the same colors will almost represent half of the points
of 𝑋𝑖 for each range. Therefore by applying this procedure iteratively, we ensure that the
number of points in each range in the subset we build is close to |𝑋|

2𝑖 .

Theorem 3.32. Let (𝑋, ℱ) be a set system with 𝑋 ∈ ℱ and suppose 𝚊𝚕𝚐𝚘 is an algorithm
that produces a coloring 𝜒 : 𝑋 → {−1, 1} s.t.

disc𝜒(𝑋, ℱ) = 𝑓(𝑛, 𝑚)

then for all 𝑡 ≥ 0, Algorithm 7 computes an 𝜀-approximation of size ⌈ 𝑛
2𝑡 ⌉ of (𝑋, ℱ) with

𝜀 = 2
𝑛

(𝑓(𝑛, 𝑚) + 2𝑓(⌈𝑛
2
⌉, 𝑚) + … + 2𝑡−1𝑓(⌈ 𝑛

2𝑡−1 ⌉, 𝑚)).

Proof. For simplicity, we assume that |𝑋| is a power of 2.

Suppose we have finished i iteration of the loop and that |𝑋+
𝑖 | ≥ |𝑋𝑖|

2 , we have

|𝑋+
𝑖 | ≤ |𝑋𝑖|

2
+ 𝑓(|𝑋𝑖|, 𝑚)

2
.

We also have 𝑋 ∈ ℱ ⇒ 𝑋𝑖 ∈ ℱ𝑖 and therefore 𝜒𝑖(𝑋𝑖) ≤ disc𝜒𝑖
(𝑋𝑖, ℱ𝑖) = 𝑓(|𝑋𝑖|, 𝑚).

Let 𝑋𝑖+1 be an arbitrary subset of 𝑋+
𝑖 of size |𝑋𝑖|

2 , then for all 𝐹 ∈ ℱ we also have

|𝐹 ∩ 𝑋+
𝑖 | ≤ |𝐹 ∩ 𝑋𝑖|

2
+ 𝑓(|𝑋𝑖|, 𝑚)

2

as all elements of 𝑋+
𝑖 are colored +1.

Therefore by applying this iteratively, after 𝑡 iterations, Algorithm 7 returns 𝑋𝑡 of size 𝑛
2𝑡 with,

45

3 Previous work

∀𝐹 ∈ ℱ, |𝐹 ∩ 𝑋𝑡| ≤ |𝐹 |
2𝑡 + ∑

𝑡−1

𝑘=0

𝑓(𝑛
2𝑘)

2𝑡−1−𝑘 = |𝐹‖𝑋𝑡|
𝑛

+ (2
𝑛

∑
𝑡−1

𝑘=0
2𝑘𝑓(𝑛

2𝑘)).

The lower bound follows from similar calculations and gives:

∀𝐹 ∈ ℱ, |𝐹 ∩ 𝑋𝑡| ≥ |𝐹‖𝑋𝑡|
𝑛

− (2
𝑛

∑
𝑡−1

𝑘=0
2𝑘𝑓(𝑛

2𝑘))

which finishes the proof. □

46

Chapter 4

A New Discrepancy Game
In this chapter, we will present a new two-player discrepancy game. We show that there exists
an almost optimal strategy to this game. Finally, we also show that this game can be used in
a MWU algorithm to compute a family of low-average discrepancy colorings.

4.1 LMB Game
𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 is a two-player game where the two players, Alice and Bob, compete in 𝑇 rounds.
Bob chooses a set system (𝑋, ℱ) with finite VC-dimension 𝑑 and discloses the ground set to
Alice.

At each round 𝑡,

• Alice chooses a coloring 𝜒𝑡 of 𝑋 and discloses it to Bob.
• After that, Bob chooses a range 𝐹𝑡 ∈ ℱ and sends it to Alice.

The goal of Alice is to minimize ∑𝑇
𝑡=1|𝜒𝑡(𝐹𝑡)| and for Bob to maximize the same expression.

Alice and Bob are allowed to select, respectively, 𝜒𝑡 and 𝐹𝑡 in a stochastic manner.

This game is of independent interest. We also present an application of the game to an
algorithm to compute a family of colorings with low average discrepancy.

Remark 4.1. This game is not trivial as choosing random colorings is not a good strategy
for Alice. Since Bob chooses the range knowing the coloring chosen by Alice, he can
simply choose the range with the largest discrepancy. This guarantees Bob a game value
of at least Ω(𝑇√𝑛 ln(𝑚)) as the discrepancy of random coloring is tight¹⁷.

In the next section, we present a simple algorithm that uses the discrepancy of ranges w.r.t.
a coloring computed by Algorithm 5 to improve itself. This algorithm shows that using
Algorithm 5 to infer the ranges to use as constraints is a valid approach. We will exploit this
idea in Alice’s strategy that we present in Section 4.3.

4.2 Low discrepancy coloring guided by the Lovett-Meka algorithm
Algorithm 8, presented below, uses the discrepancy of ranges w.r.t. a coloring computed
by Algorithm 5 to successively improve the choice of constraints to use to compute a low-
discrepancy coloring.

¹⁷See Chapter 1 of [Cha00] for details.

47

4 A New Discrepancy Game

Algorithm 8: Low discrepancy coloring guided by [LM15]

Input: (𝑋, ℱ) with finite VC-dimension 𝑑
1 𝜒0 ← random coloring of 𝑋
2 𝑡 ← 1
3 while true do
4 𝐹𝑡 ← argmax𝐹∈ℱ |𝜒𝑡−1(𝐹)|
5 If |𝜒𝑡−1(𝐹𝑡)| ≤ 41+1

𝑑 𝑐
1

2𝑑
H 𝑛1

2− 1
2𝑑 log(𝑚) log(𝑛)√ln(8𝑚𝑛 log(𝑛)) then¹⁸

6 return 𝜒𝑡−1

7
𝜒𝑡 ← the complete coloring obtained by iteratively running Algorithm 5 on
(𝑋, {𝐹1, …, 𝐹𝑡}) with constraints ∀𝑘 ≤ 𝑡, 𝑐𝑘 = 0

8 𝑡 ← 𝑡 + 1

We prove the following theorem.

Lemma 4.2. Given (𝑋, ℱ) of VC-dimension ≤ 𝑑, Algorithm 8 returns a coloring 𝜒 : 𝑋 →
{−1, 1} such that

disc𝜒(𝑋, ℱ) = 𝑂(𝑛1
2− 1

2𝑑 log5
2 (𝑚𝑛))

with probability at least 12 . Algorithm 8′s expected time complexity is 𝑂̃(𝑛2𝑚 + 𝑛4).

Proof. The condition on line 6 guarantees that if Algorithm 8 returns a coloring then the
coloring returned satisfies the theorem statement. The only thing to verify is whether Algo-
rithm 8 terminates in a finite number of steps and that the entropy condition of Algorithm 5
are satisfied at all times.

Claim 4.3. At iteration 𝑡, min1≤𝑖≤𝑡−1|Δ(𝐹𝑖, 𝐹𝑡)| > (16𝑐H)
1
𝑑 𝑛1−1

𝑑 with probability at least
1 − 1

2𝑛 .

We assume the claim above. By applying the claim’s assumption over 𝑡 iterations, we obtain
that 𝐹1, …, 𝐹𝑡 forms a (16𝑐H)

1
𝑑 𝑛1−1

𝑑 -packing with probability at least 1 − 𝑡
2𝑛 . By Haussler’s

packing lemma, the size of a (16𝑐H)
1
𝑑 𝑛1−1

𝑑 -packings can not exceed 𝑛
16 . Therefore at iteration

𝑛
16 , if the algorithm has not already stopped, 𝐹1, …, 𝐹𝑛

16
 is a (16𝑐H)

1
𝑑 𝑛1−1

𝑑 -packing with proba-
bility at least 31

32 . That is, the algorithm has already terminated or, with probability at least 31
32 ,

the algorithm terminates as {𝐹1, …, 𝐹𝑛
16
} is a maximal (16𝑐H)

1
𝑑 𝑛1−1

𝑑 -packing.

Since ∑
𝑛
16
𝑗=1 exp(0) ≤ 𝑛

16 , the entropy condition of Algorithm 8 is satisfied.

Time complexity analysis. If the algorithm succeeds, the number of iterations is bounded
by 𝑛

16 and line 4 has time complexity 𝑂(𝑚𝑛) as we need to compute the discrepancy of each
range. Line 7 has time complexity 𝑂̃(𝑛3) as we use Algorithm 5 on a set system with 𝑛
elements and at most 𝑛

16 ranges. □

¹⁸𝑐H denotes the constant in Haussler’s packing lemma.

48

4 A New Discrepancy Game

Algorithm 8 constructs a covering using information obtained from the discrepancy of a
coloring. This is the opposite of the classical paradigm that builds a covering, then computes
a coloring. However, reversing the paradigm comes at a cost as the time complexity of
coloring algorithms is large, having to run these algorithms multiple times induces a large
time complexity.

We now come back to the proof of Claim 4.3.

Proof of Claim 4.3. Let 𝐹 be such that there exists 𝑖 < 𝑡 with |Δ(𝐹 , 𝐹𝑖)| ≤ (16𝑐H)
1
𝑑 𝑛1−1

𝑑 . Then
since 𝐹𝑖 is a constraint of Algorithm 5 for the computation of 𝜒𝑡−1,

|𝜒𝑡−1(𝐹)| ≤ |𝜒𝑡−1(𝐹𝑖)|⏟⏟⏟⏟⏟
=0

+ |𝜒𝑡−1(𝐹 \ 𝐹𝑖)| + |𝜒𝑡−1(𝐹𝑖 \ 𝐹)| = |𝜒𝑡−1(𝐹 \ 𝐹𝑖)| + |𝜒𝑡−1(𝐹𝑖 \ 𝐹)|.

By Corollary 3.25 (with 𝜈 = 1
8), with probability at least 1 − 1

4𝑚𝑛 ,

|𝜒𝑡−1(𝐹 \ 𝐹𝑖)| ≤ 4(16𝑐H)
1

2𝑑 𝑛1
2− 1

2𝑑 log(𝑚) log(𝑛)√ln(8𝑚𝑛 log(𝑛)).

The same holds for |𝜒𝑡−1(𝐹 \ 𝐹𝑖)|. That is, the probability for the discrepancy of ranges close
to a range used as a constraint to be large is at most 1 − 1

2𝑚𝑛 .

By applying the union bound over all ranges, we obtain that, with probability at least 1 − 1
2𝑛 ,

any range closer than (16𝑐H)
1
𝑑 𝑛1−1

𝑑 to at least one of the 𝐹𝑡 would not be an exception to
the condition of line 6. That is, with probability at least 1 − 1

2𝑛 , at iteration 𝑡, any range that
doesn’t meet the condition of line 6 must be at distance at least (16𝑐H)

1
𝑑 𝑛1−1

𝑑 from 𝐹1.…, 𝐹𝑡−1.
This finishes the proof of the claim. □

Remark 4.4. It is not possible to reduce the first term of the time complexity of
Algorithm 8 by computing the approximate discrepancy by computing it on an 𝜀-approxi-
mation instead of on the whole ground set. That is, for 𝐴 ⊆ 𝑋, computing the discrepancy
on (𝐴, ℱ|𝐴).

This would introduce an additive error term in the discrepancy bound equal to 𝜀|𝑋|. To
improve the time complexity whilst preserving the current discrepancy bound, we would
need the error to be at most of order 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛)). That is, we would need 𝜀|𝑋| =
Θ(𝑛1

2− 1
2𝑑) ⇔ 𝜀 = Θ(𝑛−1

2− 1
2𝑑).

To obtain such epsilon with a random sample, which is the only known method that would
lead to a time complexity improvement, we would require to sample Ω(𝜀−2) = Ω(𝑛1+1

𝑑)
elements from 𝑋. However |𝑋| = 𝑛, therefore, approximate discrepancy over a random
sample is not possible.

Selecting the range with maximum discrepancy to use as a constraint is a natural approach. A
range with large discrepancy is also a range far away from ranges with small discrepancy w.r.t.
the symmetric difference. This is due to the fact that the discrepancy of a range 𝐴 is bounded
by the discrepancy of a range 𝐵 plus the discrepancy of their symmetric difference Δ(𝐴, 𝐵).
Furthermore, the discrepancy of a set can not exceed its cardinality. Thus, if the discrepancy
of 𝐵 and the cardinality of the symmetric difference Δ(𝐴, 𝐵) are small, the discrepancy of 𝐴
will be small.

49

4 A New Discrepancy Game

We build on this idea to present an almost optimal strategy for Alice in the next section.

4.3 An almost optimal stochastic strategy for Alice
In this section we will prove the following theorem.

Theorem 4.5. Let Alice and Bob play a 𝑇 rounds game of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 on (𝑋, ℱ) with finite
VC-dimension 𝑑.

There exists a strategy for Alice such that regardless of Bob’s choice of 𝐹𝑡,

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| = 𝑂

(
((𝑇 − 1

2𝑑
√

𝑛 log(𝑚) log(𝑛)√ln(𝑇 log(𝑛)) +
√

𝑛 max
(
((0, 4√ln(16𝑇

𝑛
)

)
))

)
))

with probability at least 12 .

In particular, for any constant 𝑐 ≥ 16 and 𝑛𝑐 ≤ 𝑇 ≤ 𝑛
16 , we obtain

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛)).

We show that there exists finite VC-dimension set systems where, regardless of Alice’s
strategy, Bob can make sure that 1

𝑇 ∑𝑇
𝑡=1|𝜒𝑡(𝐹𝑡)| = Ω(𝑛1

2− 1
2𝑑). That is, this bound is

optimal in the worst case up to a polylog(mn) factor.

Proof of Theorem 4.5. At iteration 𝑡 ≤ 𝑇 , Alice’s strategy will be to choose the coloring 𝜒𝑡 to
be the coloring returned by Algorithm 5 with constraints 𝜒𝑡(𝐹𝑖) = ‖𝐹𝑖‖ max(0, 4√ln(16𝑇

𝑛))
for all 𝑖 ∈ [1, 𝑡 − 1].

Denote 𝜆 = max(0, 4√ln(16𝑇
𝑛)). Choosing 𝑐𝑘 = 𝜆 for all 𝑘 < 𝑡, ensures that the entropy

condition of Theorem 3.23 is satisfied at each round of the game as:

𝑇 exp(−𝜆2

16
) ≤ 𝑛

16
.

We will show that a limited number of ranges given by Bob can have a large discrepancy w.r.t.
the colorings chosen by Alice. To do that, we will assign the ranges given by Bob to buckets
depending on their symmetric difference with the ranges given in previous iterations. Let 𝑟 >
0 and 𝑃0, …, 𝑃𝑟, 𝑃𝑟+1 be empty sets. We sequentially sort the ranges 𝐹1, …, 𝐹𝑇 given by Bob to
one of 𝑃0, …, 𝑃𝑟, 𝑃𝑟+1 by adding 𝐹𝑡 to the smallest 𝑗 ≤ 𝑟 such that for all 𝑃 ∈ 𝑃𝑗, |Δ(𝐹𝑡, 𝑃)| ≥
𝑛
2𝑗 . If 𝐹𝑡 can not be added to any 𝑃𝑗, 𝑗 ≤ 𝑟, we add 𝐹𝑡 to 𝑃𝑟+1.

By construction, at all iterations, 𝑃𝑗 is a 𝑛
2𝑗 -packing for all 𝑗 ∈ [1, 𝑟]. Therefore, Haussler’s

packing lemma gives that, |𝑃𝑗| ≤ 𝑐H2𝑗𝑑.

Denote 𝑗1, …, 𝑗𝑡 the indices of the buckets to which 𝐹1, …, 𝐹𝑇 were added. We bound the
contribution to the game value that each range chosen by Bob have solely depending on the
bucket this range gets assigned to.

50

4 A New Discrepancy Game

Let 𝑡 ≤ 𝑇 , suppose that 𝐹𝑡 has been added to the bucket with index 𝑗𝑡. That is, there exists
𝑡′ < 𝑡 such that 𝐹𝑡′ ∈ 𝑃𝑗𝑡−1 and |Δ(𝐹𝑡′ , 𝐹𝑡)| ≤ 𝑛

2𝑗𝑡−1 . Thus we have:

|𝜒𝑡(𝐹𝑡)| ≤ |𝜒𝑡(𝐹𝑡′)| + |𝜒𝑡(Δ(𝐹𝑡′ , 𝐹𝑡))|

≤ 𝜆
√

𝑛 + 4√|Δ(𝐹𝑡′ , 𝐹𝑡)| log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛))

≤ 𝜆
√

𝑛 + 4√ 𝑛
2𝑗𝑡−1 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛)).

The first summand of the bound is a direct application of Theorem 3.23 as 𝐹𝑡′ is used as a
constraint to compute 𝜒𝑡. The second comes from applying Corollary 3.25 (with 𝜈 = 𝑚𝑛

4𝑇) on
the symmetric difference set which size is bounded because 𝑃𝑗𝑡−1 is a packing. Thus we have,

𝑃(|𝜒𝑡(𝐹𝑡)| ≥ 𝜆
√

𝑛 + 4√ 𝑛
2𝑗−1 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛)) | 𝐹𝑡 ∈ 𝑃𝑗𝑡

) < 1
2𝑇

.

By using a union bound over all iterations 𝑡 ≤ 𝑇 , we obtain that, with probability at most 1
2 ,

this property holds for each pair composed of a range and a bucket.

This means that we have both a bound on the discrepancy of the ranges added to a given
bucket and a bound on the size of every bucket. To obtain a bound on the game value, we sum
up the maximum contribution of ranges depending on which bucket they get sorted to. Note
that we bound the size of the last bucket, 𝑃𝑟+1, by 𝑇 .

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| ≤ ∑

𝑟

𝑗=0
𝑐H2𝑗𝑑(𝜆

√
𝑛 + 4√ 𝑛

2𝑗−1 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛)))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

contributions from ranges in 𝑃𝑗

+𝑇(𝜆
√

𝑛 + 4√ 𝑛
2𝑟 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛)))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
contributions from ranges in 𝑃𝑟+1

= 𝜆𝑐H
√

𝑛 ∑
𝑟

𝑗=0
2𝑗𝑑 + 4

√
2𝑐H

√
𝑛 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛)) ∑

𝑟

𝑗=0
2𝑗(𝑑−1

2)

+𝑇(𝜆
√

𝑛 + 4√ 𝑛
2𝑟 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛)))

≤ 𝜆𝑐H
√

𝑛2𝑟𝑑+1 + 𝑐H
√

𝑛2𝑟(𝑑−1
2)+7

2 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛))

+𝑇(𝜆
√

𝑛 + 4√ 𝑛
2𝑟 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛))). (3)

In (3), the first two terms increase with 𝑟 whilst the third one decreases. To make these three
terms of the same order, we set 𝑟 = log(𝑇)

𝑑 ⇔ 2𝑟𝑑 = 𝑇 . Then, (3) becomes

51

4 A New Discrepancy Game

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| ≤ 2𝜆𝑐H𝑇

√
𝑛 + 27

2 𝑐H
√

𝑛𝑇 1− 1
2𝑑 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛))

+𝑇𝜆
√

𝑛 + 4𝑇 1− 1
2𝑑

√
𝑛 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛))

= 𝑇 1− 1
2𝑑

√
𝑛 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛))(2𝑐H + 4) + 𝑇𝜆

√
𝑛(8

√
2𝑐H + 1).

That is,

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| ≤ 𝑇 − 1

2𝑑
√

𝑛 log(𝑚) log(𝑛)√ln(4𝑇 log(𝑛))(2𝑐H + 4) + 𝜆
√

𝑛(8
√

2𝑐H + 1).

For any constant 𝑐 ≥ 16 and 𝑛𝑐 ≤ 𝑇 ≤ 𝑛
16 , 𝜆 = 0 and this bound becomes:

1
𝑇

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹𝑡)| = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛)).

[BC86] showed that there exists set systems with finite VC-dimension where any coloring
has discrepancy Ω(𝑛1

2− 1
2𝑑). Thus, if the game is played on such set system, by choosing the

range with maximum discrepancy at each iteration, Bob can ensure that, regardless of Alice’s
strategy, 1

𝑇 ∑𝑇
𝑡=1|𝜒𝑡(𝐹𝑡)| = Ω(𝑛1

2− 1
2𝑑). □

4.4 MWU Algorithm
We now present an algorithm to construct a family of low average discrepancy colorings
using MWU. We use the result we proved on 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 in the previous section to bound the
discrepancy of the family of colorings.

Algorithm 9: MWU Algorithm guided by [LM15]

Input: (𝑋, ℱ)
1 ∀𝐹 ∈ ℱ, 𝑦1(𝐹) ← 1
2 for 𝑡 ← 1 to 𝑛

16 do

3
𝜒𝑡 ← coloring obtained with Algorithm 5 on (𝑋, {𝐹1, …, 𝐹𝑡−1}) with constraints
𝑐1, …, 𝑐𝑡−1 = 0

4 𝐹𝑡 ← randomly sampled range according to 𝑦𝑡¹⁹

5 ∀𝐹 ∈ ℱ, 𝑦𝑡+1(𝐹) = 𝑦𝑡(𝐹)(1 + 𝜂 |𝜒𝑡(𝐹)|) where 𝜂 = √ln(𝑚)

𝑛√(ln(𝑚𝑛 log(𝑛)
4)) log(𝑚) log(𝑛)

6 return 𝜒1, …, 𝜒𝑛
16

Algorithm 9 computes 𝑛
16 colorings that we will show have small average discrepancy. The

algorithm emulates an 𝑛
16-rounds game of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎. That is, colorings are picked according

to the strategy we proved to be good for Alice and we emulate Bob’s choice of range with
the multiplicative weight update. We maintain weights on ranges that will increase with the

¹⁹That is, for all range 𝐹 ∈ ℱ, 𝑃(𝐹𝑡 = 𝐹) = 𝑦𝑡(𝐹)
∑𝐺∈ℱ 𝑦𝑡(𝐺)

52

4 A New Discrepancy Game

discrepancy that a range has w.r.t the colorings we construct. This will ensure that range that
have large discrepancy w.r.t. the colorings have higher probability to be picked.

In the proof, we will show that the average discrepancy of the colorings returned can be
bounded by the value of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 and an error term that we will control.

We will prove the following statement.

Application 4.6. (of Theorem 4.5) Given (𝑋, ℱ) a set system with finite VC-dimension
𝑑, Algorithm 9 returns 𝑛

16 colorings 𝜒1, …, 𝜒𝑛
16

 such that:

∀𝐹 ∈ ℱ, 1
𝑇

∑
𝑛
16

𝑡=1
|𝜒(𝐹)| = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛))

where for all 𝑡 ∈ [1, 𝑛
16], the coloring 𝑥(𝑡) is computed using only one additional range of

(𝑋, ℱ) that was not used to compute 𝑥(𝑡−1).

The algorithm succeeds with probability at least 14 in expected time 𝑂̃(𝑛4 + 𝑛2𝑚).

Remark 4.7. This application of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 does not directly improve the state of the art in
terms of discrepancy algorithms. As presented in Section 3.4 and Chapter 6, it is possible
to obtain algorithm achieving a better discrepancy bound with a single coloring. The goal
of this section is to show a simple application of the game.

Proof of Application 4.6. Let 𝑇 < 𝑛
16 , we first compute a bound on 𝑌𝑇+1 ≔ ∑𝐹∈ℱ 𝑦𝑇+1(𝐹).

𝑌𝑇+1 = ∑
𝐹∈ℱ

𝑦𝑇+1(𝐹)

= ∑
𝐹∈ℱ

𝑦𝑇 (𝐹)(1 + 𝜂|𝜒𝑇 (𝐹)|)

= 𝑌𝑇 + ∑
𝐹∈ℱ

𝜂𝑦𝑇 (𝐹)|𝜒𝑇 (𝐹)|

= 𝑌𝑇 + 𝑌𝑇 ∑
𝐹∈ℱ

𝜂𝑦𝑇 (𝐹)
𝑌𝑇

|𝜒𝑇 (𝐹)|

= 𝑌𝑇 (1 + ∑
𝐹∈ℱ

𝜂𝑦𝑇 (𝐹)
𝑌𝑇

|𝜒𝑇 (𝐹)|).

Applying these calculations recursively, we obtain:

𝑌𝑇+1 = 𝑌1 ∏
𝑇

𝑡=1
(1 + ∑

𝐹∈ℱ
𝜂𝑦𝑡(𝐹)

𝑌𝑡
|𝜒𝑡(𝐹)|).

Following the same induction calculation, we obtain that for all 𝐹, 𝑇 < 𝑛
16 , we have 𝑦𝑡(𝐹) =

∏𝑇
𝑡=1(1 + 𝜂|𝜒𝑡(𝐹)|). Any weight of a range is naturally smaller than the sum of all weights,

that is for all 𝐹 ∈ ℱ, 𝑇 ≤ 𝑛
16 :

53

4 A New Discrepancy Game

𝑦𝑇 (𝐹) ≤ 𝑌𝑇

⇔ ∏
𝑇

𝑡=1
(1 + 𝜂|𝜒𝑡(𝐹)|) ≤ 𝑌1 ∏

𝑇

𝑡=1
(1 + ∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡
|𝜒𝑡(𝐹 ′)|)

⇔ ln(∏
𝑇

𝑡=1
(1 + 𝜂|𝜒𝑡(𝐹)|)) ≤ ln(𝑌1) + ln(∏

𝑇

𝑡=1
(1 + ∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡
|𝜒𝑡(𝐹 ′)|))

⇔ ∑
𝑇

𝑡=1
ln(1 + 𝜂|𝜒𝑡(𝐹)|) ≤ ln(𝑌1) + ∑

𝑇

𝑡=1
ln(1 + ∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹)

𝑌𝑡
|𝜒𝑡(𝐹 ′)|).

We use the inequality for all 𝑥 ≤ 1
2 , ln(1 + 𝑥) ≥ 𝑥 − 𝑥2 on the l.h.s and 1 + 𝑥 ≤ exp(𝑥) on

the r.h.s.

⇔ ∑
𝑇

𝑡=1
(𝜂|𝜒𝑡(𝐹)| − 𝜂2|𝜒𝑡(𝐹)|2) ≤ ln(𝑌1) + ∑

𝑇

𝑡=1
ln(exp(∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡
|𝜒𝑡(𝐹 ′)|))

⇔ ∑
𝑇

𝑡=1
𝜂|𝜒𝑡(𝐹)| − ∑

𝑇

𝑡=1
𝜂2|𝜒𝑡(𝐹)|2 ≤ ln(𝑌1) + ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡
|𝜒𝑡(𝐹 ′)|

⇔ ∑
𝑇

𝑡=1
|𝜒𝑡(𝐹)| ≤ ln(𝑌1)

𝜂
+ ∑

𝑇

𝑡=1
𝜂|𝜒𝑡(𝐹)|2 + ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|.

Substituting the initial weight 𝑌1 = 𝑚, we obtain

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹)| ≤ ln(𝑚)

𝜂
+ ∑

𝑇

𝑡=1
𝜂|𝜒𝑡(𝐹)|2 + ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|. (4)

By Corollary 3.25 (𝜈 = 4), we obtain that for fixed 𝐹, 𝑡, we have

|𝜒𝑡(𝐹)| ≤ 4√𝑛 ln(𝑚𝑛log(𝑛)
4

) log(𝑚) log(𝑛)

with probability at least 1 − 8
𝑚𝑛 .

That is, using a union bound on the 𝑚 ranges at each of the 𝑛
16 iterations of the loop, we

obtain that

∀𝐹, 𝑡, |𝜒𝑡(𝐹)| ≤ 4√𝑛 ln(𝑚𝑛log(𝑛)
4

) log(𝑚) log(𝑛)

with probability at least 12 .

(4) becomes:

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹)| ≤ ln(𝑚)

𝜂
+ 16𝑇𝜂𝑛 ln(𝑚𝑛log(𝑛)

4
) log2(𝑚) log2(𝑛) + ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|. (5)

In particular for 𝑇 = 𝑛
16 , by substituting 𝜂 = √ln(𝑚)

𝑛√ln(𝑚𝑛 log(𝑛)
4) log(𝑚) log(𝑛)

, (5) becomes

54

4 A New Discrepancy Game

∑
𝑛
16

𝑡=1
|𝜒𝑡(𝐹)| ≤ 4𝑛√ln(𝑚) ln(𝑚𝑛log(𝑛)

4
) log(𝑛) log(𝑚) + ∑

𝑛
16

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|. (6)

We now bound the second term of the right hand side of (6). For a fixed 𝑡, this term’s maximum
is attained when 𝑦𝑡(𝐹 ′) = 1 for 𝐹 ′ = argmax𝐺∈ℱ|𝜒𝑡(𝐺)| and 0 for all other weights. This
means that:

∑
𝑛
16

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)| ≤ ∑
𝑛
16

𝑡=1
max
𝐹 ′∈ℱ

|𝜒𝑡(𝐹 ′)|.

This is a particular case of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎 where Bob’s strategy is to select each round the range
with maximum discrepancy w.r.t. the coloring chosen by Alice. Using Theorem 4.5, we can
bound this expression:

∑
𝑛
16

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)| = 𝑂(𝑛1− 1
2𝑑

√
𝑛 log5

2 (𝑚𝑛))

as 𝜆 = 0 for 𝑇 = 𝑛
16 . Using this result in (6) gives the bound of the theorem.

Time complexity analysis. Algorithm 5 is ran on set systems with 𝑛 elements and at most
𝑛
16 ranges which has time complexity 𝑂̃(𝑛3). The weight update step on line 5 has time
complexity 𝑂(𝑚𝑛) giving the time complexity of the theorem statement. □

4.5 Improvements of the MWU Algorithm using sampling
As shown in the proof of Application 4.6, the error term from the classical MWU method is
negligible compared to the value of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎. In this section we exploit this result to present
time complexity improvements to Algorithm 9 that can be obtained by performing the weight
update step only on a random sample of ℱ. This will increase the value of the error term.
That is why we will choose the size of the random sample to keep this increase under control.
Our goal is for the order of the error term to match the order of the value of 𝙻𝙼𝙱 𝙶𝚊𝚖𝚎. The
proof uses the analysis of the MWU algorithm for low-crossing matchings from Csikós and
Mustafa [CM21].

55

4 A New Discrepancy Game

Algorithm 10: MWU Algorithm guided by [LM15] with sampling

Input: (𝑋, ℱ)
1 ∀𝐹 ∈ ℱ, 𝑦1(𝐹) ← 1
2 for 𝑡 ← 1 to 𝑛

16 do

3
𝜒𝑡 ← coloring obtained with Algorithm 5 on (𝑋, {𝐹1, …, 𝐹𝑡−1}) with constraints
𝑐1, …, 𝑐𝑡 = 0

4 𝐹𝑡 ← randomly sampled range according to 𝑦𝑡

5 𝒮𝑡 ← sample of ℱ where each range is sampled with probability 𝒒 = min(1, √ln(𝑚)

𝑛
1
2− 1

2𝑑
)

6
∀𝐹 ∈ 𝒮𝑡, 𝑦𝑡(𝐹) = 𝑦𝑡−1(𝐹)(1 + 𝜂 |𝜒𝑡(𝐹)|

𝐷) where 𝜂 = √8 ln(𝑚)
𝑛 and 𝐷 =

4√𝑛 ln(𝑚𝑛 log(𝑛)
4) log(𝑚) log(𝑛)

7 return 𝜒1, …, 𝜒𝑛
16

This algorithm is very similar to Algorithm 9, as the only differences are that the set of ranges
which weight is updated at each iteration of the loop and that the weight update function
is normalized. The normalization step is important in order to control the error factor. Our
analysis will broadly follow the same steps as the one of Application 4.6 with some additional
probability considerations to handle the error term due to the weight update sampling. In
particular the proof will use the following lemma from Koufogiannakis and Young.

Lemma 4.8. ([KY14], lemma 10) Let 𝑋 = ∑𝑇
𝑖=1 𝑥𝑖 and 𝑌 = ∑𝑇

𝑖=1 𝑦𝑖 be the sum of non-
negative random variables where 𝑇 is a random stopping time with finite expectation,
and, for all, |𝑥𝑖 − 𝑦𝑖| < 1 and

𝔼[𝑥𝑖 − 𝑦𝑖 | ∑
𝑠<𝑖

𝑥𝑠, ∑
𝑠<𝑖

𝑦𝑠] ≤ 0

Let 𝜀 ∈ [0, 1] and 𝐴 ∈ ℝ, then

𝑃((1 − 𝜀)𝑋 ≥ 𝑌 + 𝐴) ≤ exp(−𝜀𝐴)

We will prove the following statement.

Application 4.9. (of Theorem 4.5) Let (𝑋, ℱ) be a set system with finite VC-dimension
𝑑, Algorithm 9 returns 𝑛

16 colorings 𝜒1, …, 𝜒𝑛
16

 such that:

∀𝐹 ∈ ℱ, 1
𝑇

𝔼
[
[[∑

𝑛
16

𝑡=1
|𝜒(𝐹)|

]
]] = 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛))

where for all 𝑡 ∈ [1, 𝑛
16], the coloring 𝑥(𝑡) is computed using only one additional range of

(𝑋, ℱ) that was not used to compute 𝑥(𝑡−1).

The algorithm succeeds with probability at least 14 in expected time 𝑂̃(𝑛4 + 𝑚𝑛3
2+ 1

2𝑑).

56

4 A New Discrepancy Game

Proof. Let 𝑇 < 𝑛
16 , we first compute a bound on 𝑌𝑇+1 ≔ ∑𝐹∈ℱ 𝑦𝑇+1(𝐹).

𝑌𝑇+1 = ∑
𝐹∈ℱ

𝑦𝑇+1(𝐹)

= ∑
𝐹∈ℱ

𝑦𝑇 (𝐹)(1 + 𝜂|𝜒𝑇 (𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
)

= 𝑌𝑇 + ∑
𝐹∈ℱ

𝜂𝑦𝑇 (𝐹)|𝜒𝑇 (𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡

= 𝑌𝑇 + 𝑌𝑇 ∑
𝐹∈ℱ

𝜂𝑦𝑇 (𝐹)
𝑌𝑇

|𝜒𝑇 (𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡

= 𝑌𝑇 + 𝑌𝑇 ∑
𝐹∈ℱ

𝜂𝑦𝑇 (𝐹)
𝑌𝑇

|𝜒𝑇 (𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡

= 𝑌𝑇 (1 + ∑
𝐹∈ℱ

𝜂𝑦𝑇 (𝐹)
𝑌𝑇

|𝜒𝑇 (𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
).

Applying this calculations recursively, we obtain:

𝑌𝑇+1 = 𝑌1 ∏
𝑇

𝑡=1
(1 + ∑

𝐹∈ℱ
𝜂𝑦𝑡(𝐹)

𝑌𝑡

|𝜒𝑡(𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
).

Following the same induction calculation, we obtain that for all 𝐹, 𝑇 < 𝑛
16 , we have 𝑦𝑡(𝐹) =

∏𝑇
𝑡=1(1 + 𝜂|𝜒𝑡(𝐹)|

𝐷 𝟙𝐹∈𝒮𝑡
). Any weight of a range is naturally smaller than the sum of weights,

that is for all 𝐹 ∈ ℱ, 𝑇 ≤ 𝑛
16 :

𝑦𝑇 (𝐹) ≤ 𝑌𝑇

⇔ ∏
𝑇

𝑡=1
(1 + 𝜂 |𝜒𝑡(𝐹)|

𝐷
𝟙𝐹∈𝒮𝑡

) ≤ 𝑌0 ∏
𝑇

𝑡=1
(1 + ∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
)

⇔ ln(∏
𝑇

𝑡=1
(1 + 𝜂|𝜒𝑡(𝐹)|

𝐷
𝟙𝐹∈𝒮𝑡

)) ≤ ln(𝑌0) + ln(∏
𝑇

𝑡=1
(1 + ∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
))

⇔ ∑
𝑇

𝑡=1
ln(1 + 𝜂|𝜒𝑡(𝐹)|

𝐷
𝟙𝐹∈𝒮𝑡

) ≤ ln(𝑌0) + ∑
𝑇

𝑡=1
ln(1 + ∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹)

𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
).

We use the inequality for all 𝑥 ≤ 1
2 , ln(1 + 𝑥) ≥ 𝑥 − 𝑥2 on the l.h.s and 1 + 𝑥 ≤ exp(𝑥) on

the r.h.s.

⇔ ∑
𝑇

𝑡=1
(𝜂|𝜒𝑡(𝐹)|

𝐷
𝟙𝐹∈𝒮𝑡

− 𝜂2|𝜒𝑡(𝐹)|2

𝐷2 𝟙𝐹∈𝒮𝑡
) ≤ ln(𝑌0) + ∑

𝑇

𝑡=1
ln(exp(∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
))

⇔ ∑
𝑇

𝑡=1

𝜂|𝜒𝑡(𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
− ∑

𝑇

𝑡=1

𝜂2|𝜒𝑡(𝐹)|2

𝐷2 𝟙𝐹∈𝒮𝑡
≤ ln(𝑌0) + ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ
𝜂𝑦𝑡(𝐹 ′)

𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡

⇔ ∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
≤ ln(𝑌0)

𝜂
+ ∑

𝑇

𝑡=1

𝜂|𝜒𝑡(𝐹)|2

𝐷2 𝟙𝐹∈𝒮𝑡
+ ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
.

57

4 A New Discrepancy Game

As in the proof of Application 4.6, using Lemma 3.24 we obtain that for fixed 𝐹, 𝑡,

|𝜒𝑡(𝐹)| ≤ 4√𝑛 ln(𝑚𝑛log(𝑛)
4

) log(𝑚) log(𝑛)

with probability at least 1 − 8
𝑚𝑛 .

That is, using a union bound on the 𝑚 ranges at each of the 𝑛
16 iterations of the loop, we

obtain that

∀𝐹, 𝑡, |𝜒𝑡(𝐹)| ≤ 4√𝑛 ln(𝑚𝑛log(𝑛)
4

) log(𝑚) log(𝑛)

with probability at least 12 .

We will again use this result to bound the square term of the error and we simply bound 𝟙𝐹∈𝒮𝑡

by 1. We also substitute the initial weight 𝑌1 by 𝑚. The previous equation becomes:

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
≤ ln(𝑚)

𝜂
+ 2𝜂𝑇 + ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
.

This equation is true for all ranges, that is, in particular, it is true for the range that maximizes
the l.h.s.

max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
≤ ln(𝑚)

𝜂
+ 2𝜂𝑇 + ∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
.

If 𝑞 = 1 then 𝟙𝐹∈𝒮𝑡
= 1, thus taking the total expectation gives:

𝔼[max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝟙𝐹∈𝒮𝑡
] ≤ ln(𝑚)

𝜂
+ 2𝜂𝑇 + 𝔼[∑

𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
].

If 𝑞 < 1 then, using the inequality for all functions (𝑓, 𝑔), max 𝑓(𝑥) − max 𝑔(𝑥) ≤
max(𝑓(𝑥) − 𝑔(𝑥)), we obtain:

3
4

max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝒒 ≤ ln(𝑚)
𝜂

+ 2𝜂𝑇 + max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

(3𝒒
4

− 𝟙𝐹∈𝒮𝑡
)

+ ∑
𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
(7)

with 𝑓(𝑥) = max𝐹∈ℱ ∑𝑇
𝑡=1

|𝜒𝑡(𝐹)|
𝐷

3𝒒
4 and 𝑔(𝑥) = max𝐹∈ℱ ∑𝑇

𝑡=1
|𝜒𝑡(𝐹)|

𝐷 𝟙𝐹∈𝒮𝑡
.

Taking the expectation, (7) becomes:

58

4 A New Discrepancy Game

3
4
𝔼[max

𝐹∈ℱ
∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝒒] ≤ ln(𝑚)
𝜂

+ 2𝜂𝑇 + 𝔼[max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

(3𝒒
4

− 𝟙𝐹∈𝒮𝑡
)]

+𝔼[∑
𝑇

𝑡=1
∑

𝐹 ′∈ℱ

𝑦𝑡(𝐹 ′)
𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

𝟙𝐹 ′∈𝒮𝑡
]. (8)

Since 𝒮𝑡 and 𝐹𝑡 are independent, (8) becomes:

3
4
𝔼[max

𝐹∈ℱ
∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝒒] ≤ ln(𝑚)
𝜂

+ 2𝜂𝑇 + 𝔼[max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

(3𝒒
4

− 𝟙𝐹∈𝒮𝑡
)]

+𝒒 ∑
𝑇

𝑡=1
∑

𝐹 ′∈ℱ
𝔼[𝑦𝑡(𝐹 ′)

𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

]. (9)

Lemma 4.8 with 𝑥𝑡 = |𝜒𝑡(𝐹)|
𝐷

3𝒒
4 , 𝑦𝑡 = |𝜒𝑡(𝐹)|

𝐷 𝟙𝐹∈𝒮𝑡
, 𝜀 = 1

4 and 𝐴 = 4 ln(𝑚𝑇) gives:

𝑃(max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

(3𝒒
4

− 𝟙𝐹∈𝒮𝑡
) ≥ 4 ln(𝑚𝑇)) ≤ 1

𝑇
.

Using the total probability formula, we obtain:

𝔼[max
𝐹∈ℱ

∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

(3𝒒
4

− 𝟙𝐹∈𝒮𝑡
)] ≤ 4 ln(𝑚𝑇)(1 − 1

𝑇
) + 𝑇 × 1

𝑇
= 4 ln(𝑚𝑇) + 1.

Using this inequality, (9) becomes:

3
4
𝔼[max

𝐹∈ℱ
∑
𝑇

𝑡=1

|𝜒𝑡(𝐹)|
𝐷

𝒒] ≤ ln(𝑚)
𝜂

+ 2𝜂𝑇 + 4 ln(𝑚𝑇) + 1 + 𝒒 ∑
𝑇

𝑡=1
∑

𝐹 ′∈ℱ
𝔼[𝑦𝑡(𝐹 ′)

𝑌𝑡

|𝜒𝑡(𝐹 ′)|
𝐷

]

⇔ 𝔼[max
𝐹∈ℱ

∑
𝑇

𝑡=1
|𝜒𝑡(𝐹)|] ≤ 4𝐷

3𝒒
(ln(𝑚)

𝜂
+ 2𝜂𝑇 + 4 ln(𝑚𝑇) + 1)

+4
3

∑
𝑇

𝑡=1
∑

𝐹 ′∈ℱ
𝔼[𝑦𝑡(𝐹 ′)

𝑌𝑡
|𝜒𝑡(𝐹 ′)|]. (10)

In particular for 𝑇 = 𝑛
16 and substituting the values of 𝜂 and 𝑞, (10) becomes:

𝔼
[
[[max

𝐹∈ℱ
∑

𝑛
16

𝑡=1
|𝜒𝑡(𝐹)|

]
]] ≤ Θ(𝑛3

2− 1
2𝑑 log5

2 (𝑚𝑛)) + 4
3

∑
𝑇

𝑡=1
∑

𝐹 ′∈ℱ
𝔼[𝑦𝑡(𝐹 ′)

𝑌𝑡
|𝜒𝑡(𝐹 ′)|].

Again with the same arguments as for the proof of Application 4.6, the second term of the
r.h.s. of this equation can be bounded by 𝑂(𝑛1− 1

2𝑑
√

𝑛 log5
2 (𝑚𝑛)) using Theorem 4.5 with

probability at least 12 .

This gives the bound of the theorem statement.

Time complexity analysis. the time complexity analysis is also very similar to the one of
Algorithm 9: Algorithm 5 is ran on set systems with 𝑛 elements and at most 𝑛 ranges which

59

4 A New Discrepancy Game

has time complexity 𝑂̃(𝑛3). The weight update step on line 5 has time complexity 𝑂(𝒒𝑚𝑛)
instead of simply 𝑂(𝑚𝑛) giving the time complexity of the theorem statement. □

The following corollary shows that this result implies the existence of a coloring in the family
returned that has small discrepancy w.r.t. a majority of the ranges.

Corollary 4.10. Denote 𝐵 the bound obtained in Application 4.9. There exists 𝑖 ∈ [1, 𝑛
16]

such that |{𝐹 ∈ ℱ : 𝔼[|𝜒𝑖(𝐹)|] ≤ 32𝐵
𝑛 }| ≥ 𝑚

2 .

Proof. Application 4.9 gives for all 𝐹 ∈ ℱ, ∑
𝑛
16
𝑡=1 𝔼[|𝜒𝑡(𝐹)|] ≤ 𝐵. Thus we have:

∑
𝐹∈ℱ

∑
𝑛
16

𝑡=1
𝔼[|𝜒𝑡(𝐹)|] ≤ 𝑚𝐵

⇔ ∑
𝑛
16

𝑡=1
∑
𝐹∈ℱ

𝔼[|𝜒𝑡(𝐹)|] ≤ 𝑚𝐵.

By the pigeonhole principle, ∃𝑖 ≤ 𝑛
16 s.t. ∑𝐹∈ℱ 𝔼[|𝜒𝑖(𝐹)|] ≤ 16𝑚𝐵

𝑛 .

Let 𝑌 be the random variable representing the event 𝔼[|𝜒𝑡(𝐹)|] ≤ 𝐵 a uniformly selected
range 𝐹 ∈ ℱ. By Markov’s inequality:

𝑃(𝑌 ≥ 32𝐵
𝑛

) ≤ 𝐸[𝑌]𝑛
32𝐵

=
𝑛
𝑚 ∑𝐹∈ℱ 𝔼[|𝜒𝑡(𝐹)|]

32𝐵
≤ 1

2
.

□

This corollary shows that there exists a coloring 𝜒𝑖 ∈ {𝜒1, …, 𝜒𝑛
16
} where 𝜒1, …, 𝜒𝑛

16
 are the

colorings returned by Algorithm 10 such that:

|{𝐹 ∈ ℱ : 𝜒𝑖(𝐹) = 𝑂(𝑛1
2− 1

2𝑑 log5
2 (𝑚𝑛))}| ≥ 𝑚

2
.

60

Chapter 5

A greedy algorithm for low-crossing parti-
tions for general set systems
In this chapter, we present new algorithms to compute low-crossing partitions. Unlike previ-
ous work presented in Section 1.3 and Section 3.5, our algorithm can compute partitions on
any set system. We first present a theorem to motivate a greedy approach to the low-crossing
partition problem. In fact we show that, with some hereditary assumptions, set systems that
admit low-crossing partitions admit an ordering within each of their parts such that the
crossing number of a prefix part w.r.t. the ordering is a function of the size of the prefix part.

5.1 The Ordering Theorem
Let (𝑋, ℱ) be a set system for which there exists a partition 𝒫 of size 𝑡 that has a low crossing
number with respect to ℱ. Our main insight is that, for each 𝑃𝑖 ∈ 𝒫, there exists a permutation
of the elements of 𝑃𝑖 that can be added in sequence, iteratively, such that the crossing number
increase for each addition is upper-bounded by a specific function. Thus, following such a
sequence of additions results in a set of 𝑛𝑡 points that is crossed by few ranges. We refer to this
function, derived below, as the potential function. The only requirement that we need for the
existence of such a good permutation is the following hereditary property: there is a constant
𝑑 ≥ 1 such that

∀𝑌 ⊆ 𝑋 and all 𝑠 ∈ [|𝑌 |], (𝑌 , ℱ|𝑌) admits an (𝑠, 𝑠1−1
𝑑)-partition (12)

where ℱ|𝑌 = {𝐹 ∩ 𝑌 : 𝐹 ∈ ℱ}.

Note that (12) is satisfied for those geometric set systems where partitions of sub-linear
crossing numbers are proven to exist (e.g., geometric set systems induced by semialgebraic
sets [AMS13]).

Theorem 5.1. Let (𝑋, ℱ) be a set system satisfying (12) and 𝒫 = {𝑃1, …, 𝑃𝑟} be 𝑟 disjoint
subsets of 𝑋, where |𝑃𝑖| = 𝑛

𝑡 for all 𝑖 ∈ [𝑟]. Let ℛ be a family of subsets of 𝑋 with crossing
number at most 𝜅 with respect to 𝒫. Let 𝑃𝑙 ∈ 𝒫 be any part and let ℛ𝑙 denote the set of
ranges crossing 𝑃𝑙. Then there exists an ordering of the elements of 𝑃𝑙, say ⟨𝑥1, 𝑥2, …, 𝑥𝑛

𝑡
⟩,

such that:

∀𝑘 ∈ [𝑛
𝑡
], the prefix set {𝑥1, …, 𝑥𝑘} is crossed by at most 4|ℛ𝑙|𝑡1/𝑑𝑘1/𝑑

𝑛1/𝑑 sets of ℛ. (13)

Moreover, if 𝑃𝑙 is chosen uniformly at random from {𝑃1, …, 𝑃𝑟}, then with probability at
least 12 , there exists an ordering ⟨𝑥1, 𝑥2, …, 𝑥𝑛

𝑡
⟩ of the elements of 𝑃𝑙 such that

∀𝑘 ∈ [𝑛
𝑡
], the prefix set {𝑥1, …, 𝑥𝑘} is crossed by at most 4|ℛ|𝜅𝑡1/𝑑𝑘1/𝑑

𝑟𝑛1/𝑑 sets of ℛ. (14)

61

5 A greedy algorithm for low-crossing partitions for general set systems

We will use Theorem 5.1 to define a suitable potential function: each partition will be
constructed greedily by adding elements to it that satisfy the upper bound in (14). Towards
this goal, in Theorem 5.1, we can re-try with several random starting elements, in case the
algorithm fails to compute an ordering satisfying the bound of (14), see Section 5.2 for more
details.

We remark that the ordering provided by Theorem 5.1 is not trivial, even in simple set systems.
For instance consider the set system on the 𝑛 elements of the integer grid [0,

√
𝑛] × [0,

√
𝑛] in

ℝ2 and ranges defined by half-planes bounded by
√

𝑛 − 1 evenly-spaced horizontal lines and√
𝑛 − 1 evenly-spaced vertical lines over the grid. We consider two orderings starting from

the origin, in the construction of a single partition; see Figure 8. On the left, the first 𝑘 elements
of the ordering are always contained within a box of side-length

√
𝑘. Thus, the number of

ranges crossed by the first 𝑘 elements is proportional to
√

𝑘, as desired. This demonstrates
that the origin is a good starting element of the ordering. On the other hand, the right-side
drawing demonstrates a bad ordering where the number of lines crossed increases linearly
with the number of elements in the prefix of the ordering.

Figure 8: On the left, a good ordering with a number of crossings proportional to
√

𝑘. On the
right, a bad ordering where the crossing number evolves linearly with 𝑘, for 1 ≤ 𝑘 ≤ 2

√
𝑘.

We return to the proof of Theorem 5.1.

Proof of Theorem 5.1. Set 𝑄0 = 𝑃𝑙 and 𝒮0 = {𝑅 ∩ 𝑄0 : 𝑅 ∈ ℛ𝑙}. By applying (12) with 𝑠 =
2𝑑, (𝑄0, 𝒮0) has a simplicial partition 𝒫1, of size 2𝑑, with crossing number at most

(2𝑑)1−1
𝑑 = 2𝑑−1.

By the pigeonhole principle, there exists a part, say 𝑄1 ∈ 𝒫1, that is crossed by at most

|𝒮0| ⋅ 2𝑑−1

2𝑑 = |𝑆0|
2

≤ |𝑅𝑙|
2

ranges of ℛ. Denote the set of ranges that cross 𝑄1 by 𝒮1. Note that 𝑛
2𝑑𝑡 ≤ |𝑄1| ≤ 𝑛

2𝑑−1𝑡 . Now
we repeat the same process with (𝑄1, 𝒮1). That is, at the 𝑗-th step, we compute a (2𝑑, 2𝑑−1)
-partition, denoted by 𝒫𝑗+1, of (𝑄𝑗, 𝒮𝑗). Then by pigeonhole principle, there exists a set
𝑄𝑗+1 ∈ 𝒫𝑗+1 that is crossed by at most

62

5 A greedy algorithm for low-crossing partitions for general set systems

|𝑆𝑗| ⋅ 2𝑑−1

2𝑑 = |𝑆𝑗|
2

≤ |𝑅𝑙|
2𝑗+1

ranges of ℛ. Further, we have 𝑛
2(𝑗+1)𝑑𝑡 ≤ |𝑄𝑗+1| ≤ 𝑛

2(𝑗+1)(𝑑−1)𝑡 . We continue as long as |𝑄𝑗| <
2𝑑 and denote 𝑇 , the first index where this is true. This results in a sequence

𝑄𝑇 ⊆ 𝑄𝑇−1 ⊆ … ⊆ 𝑄0 = 𝑃𝑙.

Our final ordering, denoted by 𝜋, is as follows:

• elements of 𝑄𝑇 (in any order),
• the elements of 𝑄𝑇−1 \ 𝑄𝑇 (in any order),
• then the elements of 𝑄𝑇−2 \ 𝑄𝑇−1 (in any order),

⋮
• finally, the elements of 𝑄0 \ 𝑄1.

Now fix any 𝑘 ∈ [𝑛
𝑡], and let 𝑗 ∈ [𝑇] be the largest index such that |𝑄𝑗| > 𝑘. That is,

𝑛
2(𝑗+1)𝑑𝑡

≤ |𝑄𝑗+1| ≤ 𝑘 < |𝑄𝑗| ≤ 𝑛
2𝑗(𝑑−1)𝑡

. (16)

The first 𝑘 elements in our ordering 𝜋 all lie in 𝑄𝑗, and by our construction, 𝑄𝑗 is crossed by
at most |𝑅𝑙|

2𝑗 sets of ℛ. That is, the set formed by the 𝑘 first elements in our ordering is crossed
by at most these many sets of ℛ:

|𝑅𝑙|
2𝑗 = 2|𝑅𝑙|

(2(𝑗+1)𝑑)1/𝑑
𝑡1/𝑑𝑛1/𝑑

𝑡1/𝑑𝑛1/𝑑

= 2|𝑅𝑙|𝑡1/𝑑

𝑛1/𝑑 (𝑛
2(𝑗+1)𝑑𝑡

)
1/𝑑

≤ 2|𝑅𝑙|𝑡1/𝑑

𝑛1/𝑑 ⋅ 𝑘1/𝑑,

where the last step follows from (16).

Finally if 𝑃𝑙 is a part picked uniformly at random, we have

𝔼[|ℛ𝑙|] = ∑
𝑟

𝑖=1

1
𝑟

|ℛ𝑖|

= 1
𝑟

∑
𝑅∈ℛ

∑
𝑟

𝑖=1
𝐼(𝑃𝑖, 𝑅)

≤ 1
𝑟

∑
𝑅∈ℛ

𝜅

= |ℛ|𝜅
𝑟

.

By Markov’s inequality, we have

63

5 A greedy algorithm for low-crossing partitions for general set systems

Pr[|ℛ𝑙| ≤ 2|ℛ|𝜅
𝑟

] ≤ 1
2
, (18)

Thus with probability at least 12 , the 𝑘 first elements in our ordering are crossed by at most

2|ℛ𝑙|𝑡
1
𝑑

𝑛1
𝑑

⋅ 𝑘1
𝑑 ≤ 4|ℛ|𝜅𝑡1

𝑑 𝑘1
𝑑

𝑟𝑛1
𝑑

ranges of 𝑅. □

5.2 Our Greedy Algorithm Using the Potential Function
Classical methods for building simplicial partitions use the multiplicative weight update
(MWU) framework to maintain a weight function on each 𝐹 ∈ ℱ that evolves with the
number of parts crossed by 𝐹 . This is combined with the key step of finding a good set of 𝑛

𝑡
elements of 𝑋 (which constitutes the next part) that is crossed by ranges of low total weight
in each iteration.

Greedy Potential. In our method, we keep the MWU framework to ensure low crossing
number, but take a different approach for constructing the parts, inspired by Theorem 5.1. At
iteration 𝑖, we sample a random element 𝑥0 ∈ 𝑋 \ (𝑃1 ∪ … ∪ 𝑃𝑖−1) to be the starting element
of 𝑃𝑖. The algorithm proceeds by greedily adding elements to 𝑃𝑖 so that the total weight of
ranges crossing 𝑃𝑖 stays below the potential function bound of Theorem 5.1. To this end, we
maintain a function 𝜔(⋅) which stores, for each 𝑥 ∈ 𝑋 \ (𝑃1 ∪ … ∪ 𝑃𝑖), the cost of adding 𝑥
to 𝑃𝑖. In other words, 𝜔(𝑥) is the total weight of ranges in

𝒞(𝑃𝑖, 𝑥) ≔ ranges in ℱ that do not cross 𝒫𝑖 but cross 𝑃𝑖 ∪ {𝑥}.

Initially, for any 𝑥, 𝜔(𝑥) is equal to the total weight of ranges crossing the edge {𝑥0, 𝑥}. Note
that each time we pick an element 𝑥′ to be added to 𝑃𝑖, we need to adjust, for each 𝑥 ∈ 𝑋 \ 𝑃𝑖,
its weight 𝜔(𝑥) by removing the weight of those ranges that are both in 𝒞(𝑃𝑖, 𝑥) and 𝒞(𝑃𝑖, 𝑥′).

Formally, at step 𝑘 of the construction of 𝑃𝑖, with 𝑥0, …, 𝑥𝑘−1 the elements of 𝑋 selected in
the first 𝑘 − 1 steps of the construction of 𝑃𝑖 and 𝜋(𝐹) = 2∑𝑖−1

𝑗=1 𝐼(𝑃𝑗,𝐹).

𝜔(𝑥) = ∑
𝐹∈ℱ

𝜋(𝐹)𝐼({𝑥0, 𝑥}, 𝐹)(1 − 𝐼({𝑥0, …, 𝑥𝑘−1}, 𝐹)).

The resulting algorithm is presented in Greedy Potential. When set systems admit partitions
with sublinear crossing number, 𝑑 is immediately deduced from the crossing number. Other-
wise, it is possible to run the algorithm log(𝑛) times to search the value of 𝑑 in [1, 𝑛] that gives
the best crossing number.

64

5 A greedy algorithm for low-crossing partitions for general set systems

Algorithm 11: GreedyPotential

1 𝑛 ← |𝑋|, 𝑚 ← |ℱ|, 𝒫 ← ∅
2 ∀𝐹 ∈ ℱ, 𝜋(𝐹) ← 1
3 for 𝑖 ← 1 to 𝑡 do
4 𝑥0 ← a random element of 𝑋
5 𝑃𝑖 ← {𝑥0}
6 cost ← 0
7 for 𝐹 ∈ ℱ do
8 foreach 𝑥 ∈ 𝑋 with 𝐹 crossing {𝑥0, 𝑥} do
9 𝜔(𝑥) ← 𝜔(𝑥) + 𝜋(𝐹)

10 for 𝑘 ← 2 to 𝑛𝑡 do
11 𝑦𝑘 ← any element of X s.t. cost + 𝜔(𝑦𝑘) ≤ 2𝑘1/𝑑 ∑𝐹∈ℱ 𝜋(𝐹)

|𝑋|1/𝑑

12 𝑋 ← 𝑋 \ {𝑦𝑘}
13 cost ← cost + 𝜔(𝑦𝑘)
14 foreach 𝐹 ∈ 𝒞(𝑃𝑖, 𝑦𝑘) do
15 foreach 𝑥 ∈ 𝑋 with 𝐹 crossing {𝑥0, 𝑥} do
16 𝜔(𝑥) ← 𝜔(𝑥) − 𝜋(𝐹)
17 𝑃𝑖 ← 𝑃𝑖 ∪ {𝑦𝑘}
18 ∀𝐹 ∈ ℱ, 𝜋(𝐹) ← 𝜋(𝐹) ⋅ 2𝐼(𝑃𝑖,𝐹)

19 𝒫 ← 𝒫 ∪ {𝑃𝑖}
20 𝑋 ← 𝑋 \ 𝑃𝑖
21 return 𝒫

Interestingly, this algorithmic idea is already present in Chan’s paper [Cha12], though it is
used between partitions. Chan’s algorithm starts from 𝑋 and then iteratively refines the initial
partition with the use of cuttings. The order in which the partitions are refined is via a random
permutation. Chan’s algorithm is top-down, requiring cuttings to do the refinement from one
level to the next. The heuristic we propose constructs the parts bottom-up via the existence
of a potential function that guides our greedy algorithm.

The classical proofs proceed by upper-bounding, using cuttings or packing lemmas, the
number of ranges crossing the 𝑖-th constructed part. This upper-bound is an absolute bound
depending only on 𝑛, 𝑚, 𝑑, and 𝑖. For general set systems, we do not have access to cuttings or
packing lemmas, and we only rely on the fact that the input set system satisfies (12). Thus we
take a different strategy in the proof: we derive the upper bound on the crossing number for
the 𝑖-th part by applying (12) iteratively to the remaining elements. Note that this upper bound
depends also on the crossing number of the parts constructed so far. However, the theorem
below shows that this additional term adds only a logarithmic factor to the crossing number.

65

5 A greedy algorithm for low-crossing partitions for general set systems

Theorem 5.2. Overall crossing number bound. Let (𝑋, ℱ) be a set system satisfying
(12). Assuming Greedy Potential is always able to pick an element satisfying (14), then
Greedy Potential constructs a (𝑡, 𝑂(ln 𝑚 + 𝑡1−1

𝑑 ln 𝑡))-partition w.r.t. ℱ.

Proof. Let 𝑋′ be a subset of 𝑋 of size exactly 𝑡⌊𝑛
𝑡 ⌋. Let 𝒫0 be a partition of 𝑋′ into 𝑡 equal-

sized subsets, with crossing number 𝑡1−1
𝑑 . Applying Theorem 5.1, we pick a random element

from 𝑋′—which is equivalent to picking a random part of 𝒫0 as they all have the same size
—and construct an 𝑛

𝑡 -sized set, say 𝑆1, containing it using a greedy algorithm. Since (14) is
satisfied for 𝑆1, the number of ranges of ℱ crossing 𝑆1 is at most

4|ℱ| 𝑡1−1/𝑑𝑡1/𝑑(𝑛/𝑡)1/𝑑

𝑡𝑛1/𝑑 = 4|ℱ|
𝑡1/𝑑 .

Next, we construct a new family of multisets ℱ1 by duplicating the ranges crossing 𝑆1:

ℱ1 = ℱ ∪ {𝐹 ∈ ℱ : 𝐹 crosses 𝑆1}.

By our assumption on (𝑋, ℱ), there exists a partition 𝒫1 of size 𝑡 − 1 for 𝑋′ \ 𝑆1 with
crossing number (𝑡 − 1)1−1/𝑑. Apply Theorem 5.1 and the greedy algorithm to get a set 𝑆2
of 𝑛

𝑡 elements from 𝑋′ \ 𝑆1. Since (14) is again satisfied for 𝑆2, the number of ranges of ℱ1
crossing 𝑆2 is at most

4|ℱ1| (𝑡 − 1)1−1/𝑑𝑡1/𝑑(𝑛
𝑡)1/𝑑

(𝑡 − 1)𝑛1/𝑑

≤
|ℱ| (1 + 4

𝑡1/𝑑)(4𝑡1−1/𝑑)
𝑡 − 1

.

We again duplicate the sets of ℱ1 crossing 𝑆2, to get the next multiset ℱ2.

Continuing on for 𝑡 steps, we get a partition {𝑆1, …, 𝑆𝑡} of 𝑋′, and |ℱ𝑡| can be bounded as

|ℱ𝑡| ≤ |ℱ| ∏
𝑡

𝑖=1
(1 + 4𝑡1−1/𝑑

𝑖
)

≤ 𝑚 exp(4𝑡1−1/𝑑 ∑
𝑡

𝑖=1

1
𝑖
)

= 𝑂(𝑚 exp(𝑡1−1/𝑑 ln 𝑡)).

On the other hand, a range crossing 𝑙 parts in {𝑆1, …, 𝑆𝑡} appears at most 2𝑙 times in ℱ𝑡,
implying that

𝑙 ≤ log(|ℱ𝑡|) = 𝑂(ln 𝑚 + 𝑡1−1/𝑑 ln 𝑡).

{𝑆1, …, 𝑆𝑡 ∪ (𝑋 \ 𝑋′)} is a (𝑡, 𝑂(ln 𝑚 + 𝑡1−1/𝑑 ln 𝑡))-partition of 𝑋 w.r.t. ℱ because its
crossing number is at most one more than the crossing number of {𝑆1, …, 𝑆𝑡} (the set with
maximum crossing number might intersect 𝑆𝑡 ∪ (𝑋 \ 𝑋′) but not 𝑆𝑡). □

66

5 A greedy algorithm for low-crossing partitions for general set systems

Note that the first set 𝑆1 may contain elements from any mixture of the sets of 𝒫0. This is not
a problem: the only property that we require is an upper bound on the total number of sets of
ℱ that cross 𝑆1. The next step, for computing 𝑆2, can take as input an arbitrary partition 𝒫1
on 𝑋 \ 𝑆1 with a suitably low crossing number. We do not require any “consistency” between
the partitions 𝒫0 and 𝒫1.

The reader may notice that in our experiments we use the potential function

2𝑘1/𝑑 ∑𝐹∈ℱ 𝜋(𝐹)
|𝑋|1/𝑑 , (20)

which is slightly more restrictive than the one derived from Theorem 5.1. In the proof of
Theorem 5.2, we apply successively Theorem 5.1 with decreasing 𝑡 at each iteration which

gives potential function: 𝑖 ⋅ 2𝑘
1
𝑑 ∑𝐹∈ℱ 𝜋(𝐹)

|𝑋|
1
𝑑

 for the elements of the 𝑖𝑡ℎ part. In our experiments,

we use a potential function that does not depend on the number of parts already built. That
is, the two potential functions are equal while building the first part but the experimental
potential function remains constant when the theoretical one increases linearly after each part
is built.

We also exclude some implementation details in the pseudo-code of Greedy Potential. For
instance, after selecting 𝑦𝑘, we do not immediately update 𝜔(𝑥) with all ranges in 𝒞(𝑃𝑖, 𝑦𝑘).
We store these ranges in a queue and only update 𝜔(𝑥) in the next iteration, range by range,
until we can find an element within the potential function rate for the next iteration.

The algorithmic bottleneck of Greedy Potential is the weight update operation (i.e. updating
𝜔(⋅)) which gives an overall time complexity of 𝑂(𝑛𝑚𝑡), since it is only performed at most
once per partition for each pair (𝑥, 𝐹) ∈ 𝑋 × ℱ.

5.3 Variants
Min Weight In this variant of Greedy Potential, instead of selecting an arbitrary element
satisfying the upper bound of the potential function, we pick the element with the lowest
weight at the time. This variant has the same asymptotic time complexity of 𝑂(𝑛𝑚𝑡) as Greedy
Potential.

67

5 A greedy algorithm for low-crossing partitions for general set systems

Algorithm 12: MinWeight

1 𝑛 ← |𝑋|, 𝑚 ← |ℱ|, 𝒫 ← ∅
2 ∀𝐹 ∈ ℱ, 𝜋(𝐹) ← 1
3 for 𝑖 ← 1 to 𝑡 do
4 𝑥0 ← a random element of 𝑋
5 𝑃𝑖 ← {𝑥0}
6 cost ← 0
7 for 𝐹 ∈ ℱ do
8 foreach 𝑥 ∈ 𝑋 with 𝐹 crossing {𝑥0, 𝑥} do
9 𝜔(𝑥) ← 𝜔(𝑥) + 𝜋(𝐹)

10 for 𝑘 ← 2 to 𝑛𝑡 do
11 𝑦𝑘 ← argmin𝑥∈𝑋 𝜔(𝑥)
12 𝑋 ← 𝑋 \ {𝑦𝑘}
13 cost ← cost + 𝜔(𝑦𝑘)
14 foreach 𝐹 ∈ 𝒞(𝑃𝑖, 𝑦𝑘) do
15 foreach 𝑥 ∈ 𝑋 with 𝐹 crossing {𝑥0, 𝑥} do
16 𝜔(𝑥) ← 𝜔(𝑥) − 𝜋(𝐹)
17 𝑃𝑖 ← 𝑃𝑖 ∪ {𝑦𝑘}
18 ∀𝐹 ∈ ℱ, 𝜋(𝐹) ← 𝜋(𝐹) ⋅ 2𝐼(𝑃𝑖,𝐹)

19 𝒫 ← 𝒫 ∪ {𝑃𝑖}
20 𝑋 ← 𝑋 \ 𝑃𝑖
21 return 𝒫

As we will see later, our experiments show that Min Weight generally finds partitions with
lower crossing numbers and runs faster than Greedy Potential. It is beneficial to spend some
extra time to search for the vertex with the lowest 𝜔(⋅) value at every iteration, as it then
decreases the total number of crossings.

Part At Once Next, to improve the running time, we present a different approach where
weight updates are done only when a part of the partition has been built. This has the added
benefit that this can easily be parallelized.

68

5 A greedy algorithm for low-crossing partitions for general set systems

Algorithm 13: PartAtOnce

1 𝑛 ← |𝑋|, 𝑚 ← |ℱ|, 𝒫 ← ∅
2 ∀𝐹 ∈ ℱ, 𝜋(𝐹) ← 1
3 for 𝑖 ← 1 to 𝑡 do
4 𝑥0 ← a random element of 𝑋
5 ∀𝑥 ∈ 𝑋, 𝜔(𝑥) ← 0
6 for 𝑤 steps do
7 𝑆 ← random range with ∀𝑓 ∈ ℱ, 𝑃(𝑆 = 𝐹) = 𝜋(𝐹)

∑𝐺∈ℱ 𝜋(𝐺)

8 foreach 𝑥 ∈ 𝑋 such that 𝑆 crosses {𝑥, 𝑥0} do
9 𝜔(𝑥) ← 𝜔(𝑥) + 𝜋(𝑆)

10
𝑃𝑖 ← {𝑥0} ∪ 𝑀𝜔 where 𝑀𝜔 contains the 𝑛𝑡 − 1 elements of 𝑋 with the smallest
weight w.r.t 𝜔

11 ∀𝐹 ∈ ℱ, 𝜋(𝐹) ← 𝜋(𝐹) ⋅ 2𝐼(𝑃𝑖,𝐹)

12 𝒫 ← 𝒫 ∪ {𝑃𝑖}
13 𝑋 ← 𝑋 \ 𝑃𝑖
14 return 𝒫

This algorithm builds each part of the partition by picking a random first element 𝑥0 and then
adding the 𝑛𝑡 − 1 elements with the lowest 𝜔 values. Once a part is built, we update the weights
of the ranges using the MWU rule as before. Furthermore, we only use an approximation of
the cost of adding an element: we sample 𝑤= Θ(𝑡) ranges according to their weights and
compute elements’ cost only with respect to these ranges. The resulting algorithm is given
in Part At Once. The overall time complexity is 𝑂(𝑚𝑛 + 𝑡𝑤𝑛), as the weight update takes
time 𝑂(𝑚𝑛

𝑡). Another advantage of this algorithm is that the weight update step now can be
parallelized to as many as 𝑚 cores.

5.4 Experiments
We now turn to an evaluation of our algorithms on a variety of data.

Our initial experiments, including the ones for parameter setting are performed on geometric
set systems induced by half-spaces in ℝ𝑑. There are two reasons for this:

Lower bound. The base set 𝑋 can be constructed such that any partition into 𝑡 parts has
crossing number Ω(𝑡1−1

𝑑).

Comparability. The only known implementation of low-crossing partitions is for half-
space set systems in ℝ2 [MP18].

In particular, we consider the following set system (𝑋, ℱ).

Grid set system. Given two parameters 𝑛, 𝑑 ∈ ℕ, the base set 𝑋 consists of 𝑛 points in
the unit hypercube [0, 1]𝑑 uniformly at random (each coordinate is set independently and
uniformly). The range set ℱ is induced by 𝑑𝑛1/𝑑 grid-like halfspaces (for each of the standard
basis vectors, we add 𝑛1/𝑑 evenly-spaced half-spaces orthogonal to this vector, each containing

69

5 A greedy algorithm for low-crossing partitions for general set systems

the point (1, …, 1)). We also tested our algorithms on the variants of this set system with non-
uniform point distributions and other types of halfspaces distribution such as non-uniform
grids. We obtained similar results in terms of crossing number on non-uniform halfspaces-
spanned set systems and therefore did not include these results in this work.

Regarding non-geometric set systems, we run our algorithms on different types of graphs
(power-law neighborhood hypergraphs, Facebook social circles data, and ArXiv co-authorship
data from the SNAP dataset collection [LK14]). We also provide in Section 5.4.3.3 experiments
on lines in the projective planes where partitions have been proved to have linear crossing
number for 𝑡 = 𝑂(

√
𝑛) [AHW87] and we obtain results in agreement to this.

5.4.1 Implementations
We provide two implementations for the partition algorithms, one in C++ and one in Rust.
The Rust implementation is faster but more memory consuming. They are compatible as they
use the same file format to store set systems and partitions. The Rust implementation does
not implement all types of set systems generation as the set systems can be generated effi-
ciently with the C++ implementation and partitioned afterwards with the Rust code. We also
did not reimplement some evaluation and experimental functions such as violation number
computation in Rust. The Rust implementation should mainly be used to quickly partition set
systems stored in files. The runtimes we give in this work have been obtained with the Rust
implementation.

We ran our experiments on a home computer with 16GB of RAM and an AMD Ryzen 7 5800X
(16 cores) @ 4.85 GHz, all 16 cores were used for Part At Once.

5.4.2 Algorithm Parameters
Experiments on the number of samples to approximate the weights in Part At Once

Recall that the algorithm Part At Once has an input parameter 𝑤 which determines
how many weight-updates we do each iteration. That is, we want to estimate the sums
∑𝐹∈ℱ 𝜋(𝐹)𝐼(𝐹 , {𝑥0, 𝑥}) for all 𝑥 ∈ 𝑋.

We study the influence of the parameters of set systems on the number of samples required to
obtain a good approximation of the weight of each element. We draw in Figure 9 the evolution
of the crossing number depending on 𝑤 with varying parameters 𝑛, 𝑑, 𝑡. This experiment has
been obtained by averaging 10 runs of Part At Once on grid set systems with 𝑛 = 8192, 𝑑 =
2 and 𝑡 = 128 when they are not the varying parameter.

70

https://github.com/alex-louvet/partitions
https://github.com/alex-louvet/partitions-rs

5 A greedy algorithm for low-crossing partitions for general set systems

Figure 9: Evolution of the crossing number with 𝑤 on grid set systems with varying 𝑛, 𝑑, 𝑡
from left to right

As we can see on the figures, increasing 𝑤 will decrease the crossing number. However after
some point the decrease in the crossing number is small. At this point, further increasing 𝑤
is not interesting as it increase runtime without significantly improving the crossing number.

We see that changing 𝑛 and 𝑑 does not change the number of samples required to obtain a
small crossing number. The third graph reveals that the number of sample should be a function
of 𝑡 and interpolating the results gives that 𝑤 ≈ 𝑡

2 is the point where the crossing number
decrease is slow.

Thus we set 𝑤 = max(30, 𝑡
2) for all the experiments with Part At Once on the grid set system.

We repeated this experiment on random halfspaces and random power-law graph set systems.
We obtained that the number of samples to estimate well the element’s weight similarly only
depends on 𝑡. However, the number of samples to obtain a small crossing w.r.t. 𝑛 and 𝑑 is
higher, therefore, we set 𝑤 = max(100, 𝑡

2) for the other experiments.

Number of potential function violations

We have shown that the overall crossing number is bounded if we always extend parts with
elements such that cost(𝑃𝑖) + 𝜔(𝑥) is below the potential function of (14).

In Greedy Potential and Min Weight, we keep track of the number of iterations where there
was no element such that cost(𝑃𝑖) + 𝜔(𝑥) is below the upper bound provided by the potential
function with cost(𝑃𝑖) the weight of the partial part (i.e. sum of the elements’ weight added
to it) during the course of the algorithm.

As we noted before, the potential function used in our implementations is stricter than the one
provided by Theorem 5.1 (the theoretical potential is larger on all but the first part). We study
whether it violates the experimental potential function as well as the theoretical potential
function from Theorem 5.1.

Figure 10 visualizes how the number of violations evolve during the construction of each part
of the partition. It consists of blocks of 4 lines, each block containing the data for 8192 points
on the 2 −dimensional grid set system with, from top to bottom, 16, 32 and 64 parts. The 4
lines correspond (from top to bottom) to the following algorithms and violation measures:

71

5 A greedy algorithm for low-crossing partitions for general set systems

(1) Greedy Potential , with violations according to the potential function of Theorem
5.1,

(2) Min Weight, with violations according to the potential function of Theorem 5.1,
(3) Greedy Potential, with violations according to the potential function of (20),
(4) Min Weight, with violations according to the potential function (20).

Each line consists of 𝑡 many squares, where the color of the 𝑖𝑡ℎ square encodes the number of
violations occurred during the construction of the 𝑖𝑡ℎ part.

These data have been obtained by averaging over the results of 100 runs of the algorithms. We
observe that Min Weight rarely picks an element violating the potential function bound, even
with respect to the practical, stricter potential function. However, when looking at Greedy
Potential compared to the experimental potential function, we see an increase in the number
of violations. Interestingly, in most of the cases, we still stay below the theoretical potential
function bound.

Figure 10: Number of potential function bound violations.

For reference, we also include numerical data on the number of potential function violations
in Table 1 with bigger partition sizes.

72

5 A greedy algorithm for low-crossing partitions for general set systems

input
n,d,t

Greedy Potential
violations

Min Weight
violations

8192,2,128 159.4 2.1

8192,2,256 173.4 4.3

8192,2,512 121.9 1.1

8192,2,1024 84.0 21.3

8192,2,2048 60.9 11.6

8192,2,512 121.9 1.1

8192,3,512 146.7 47.2

8192,4,512 141.6 47.6

8192,5,512 96.4 33.5

8192,10,512 1.7 16.5

2048,2,512 20.9 0

4096,2,512 49.5 0

8192,2,512 121.9 0

16384,2,512 232.7 7.0

5.4.3 Performance evaluation
Grid set system

The grid set system has two parameters, 𝑛, 𝑑 ∈ ℕ and is constructed as follows. We take 𝑛
points in the unit hypercube [0, 1]𝑑, picking each coordinate independently and uniformly.
For each of the standard basis vectors, add 𝑛1

𝑑 evenly-spaced halfspaces orthogonal to this
vector, each containing the point (1, …, 1).

We studied the evolution of both the crossing number and runtime of our algorithms depend-
ing on the different variables 𝑛, 𝑑 and 𝑡 of the grid set system. Figure 11 illustrates the results
of the algorithms averaged over 10 executions. We also include the raw data of experiments
on grids and random halfspace in Table 2.

For 𝑑 = 2, we compare our method to MP-Matoušek, which is the implementation of
Matoušek’s algorithm by Matheny and Phillips [MP18] in 𝙿𝚢𝚝𝚑𝚘𝚗²⁰. MP-Matoušek uses the
branch factor of the polytree they build to construct cuttings as an optimization parameter:
increasing it can reduce the crossing number but also increases runtime. We use the default
branching factor provided by their implementation in our experiments.

²⁰The code of Matheny is available on Github [Mat18], we modified it to be able to use it on our input data
and made the modifications available on Github.

73

https://github.com/alex-louvet/pypartition

5 A greedy algorithm for low-crossing partitions for general set systems

Figure 11: Average crossing numbers and runtimes of the 3 variations of the algorithm
depending on the parameters 𝑛, 𝑑, 𝑡 on the grid set system. The curves trace the averages, the
shaded area corresponds to ±1 standard deviation. Each parameter has been tested indepen-

dently and we set 𝑛 = 8192, 𝑑 = 2 and 𝑡 = 512 when they are not the parameter varying.

74

5 A greedy algorithm for low-crossing partitions for general set systems

The results are presented in Figure 11. The left column represents the crossing numbers with,
from top to bottom, varying 𝑛, 𝑑, and finally 𝑡. The lines represent 𝜅ℱ. The black line marks
2𝑡1−1

𝑑 , that is the order of the crossing number that can be achieved for set systems induced by
halfspaces. The red lines corresponds to Min Weight, the purple one to Part At Once and the
blue lines to MP-Matoušek. The graphs on the right represent the runtimes with the same
color code.

We see that Min Weight and Part At Once obtain crossing numbers close to the optimal bounds
of 𝑡1−1

𝑑 . Part At Once is significantly faster than Min Weight on large set systems even if
on small ones the overhead of parallelization makes it slower. This is particularly visible on
random halfspaces set system partition as |ℱ| is larger (cf Table 2).

Greedy Potential performs worse than the other two methods on abstract systems as well,
we omitted further data on this algorithm for readability purpose. However, we include it for
reference on figures where it does not diminish readability (Table 2, Figure 12 and Table 7).

We even see that Min Weight and Part At Once consistently outperform MP-Matoušek in
terms of crossing number. However, for large halfspaces-spanned set systems, MP-Matoušek
is faster than our algorithms as it uses ranges sampling to compute cuttings (cf. random
halfspaces results in Table 2). Sampling also allows their implementation to maintain a stable
runtime when 𝑛 and 𝑚 increases when our runtimes increases with both. However our
implementations’ runtime doesn’t increase as much when 𝑡 increases. We also tried adding
ranges sampling in our weight computation, the results we obtained were not conclusive.

Table 2: 𝜅𝐹 and runtime of our algorithms on the grid set system and a set system generated by halfspaces.

input
n,d,t 2𝑡1−1/𝑑 MP-Matoušek

𝜅ℱ runtime (s)
Min Weight

𝜅ℱ runtime (s)
Greedy Potential
𝜅ℱ runtime (s)

Part At Once
𝜅ℱ runtime (s)

Grid

2048,2,128 22.6 30.3 4.43 15.9 0.0265 45.4 0.029 22.5 0.0253

4096,2,128 22.6 32.8 4.41 17.4 0.0789 50.0 0.0867 23.6 0.0734

8192,2,128 22.6 35.3 4.41 18.8 0.256 49.0 0.259 24.1 0.281

16384,2,128 22.6 35.8 4.52 19.3 1.0 52.3 0.848 24.3 1.3

32768,2,128 22.6 36.25 4.62 19.4 3.82 50.8 2.83 24.8 6.56

32768,2,32 11.3 16.0 1.24 10.3 2.64 22.6 1.59 12.7 4.59

32768,2,64 16.0 23.9 2.41 14.4 3.06 34.5 1.97 17.8 5.6

32768,2,128 22.6 36.25 4.62 19.4 3.82 50.8 2.83 24.8 6.56

32768,2,256 32.0 52.6 9.07 26.9 5.18 99.8 4.3 35.2 7.69

32768,2,512 45.3 71.5 18.1 36.0 7.74 211.8 7.45 48.8 9.4

32768,2,1024 64.0 106.6 36.0 47.1 12.7 566.6 14.7 73.0 20.1

32768,2,128 22.6 36.25 4.62 19.4 3.82 50.8 2.83 24.8 6.56

32768,3,128 50.8 36.9 2.6 91.1 1.12 46.1 1.96

32768,4,128 76.1 48.6 2.38 104.2 0.855 62.2 1.29

32768,5,128 97.0 56.3 2.3 128.0 0.657 80.5 1.06

75

5 A greedy algorithm for low-crossing partitions for general set systems

input
n,d,t 2𝑡1−1/𝑑 MP-Matoušek

𝜅ℱ runtime (s)
Min Weight

𝜅ℱ runtime (s)
Greedy Potential
𝜅ℱ runtime (s)

Part At Once
𝜅ℱ runtime (s)

32768,10,128 158 50.2 2.08 128.0 0.311 75.1 0.946

Random Halfspaces

2048,2,128 22.6 34.5 4.3 19.0 2.8 49.5 3.27 27.8 0.764

4096,2,128 22.6 37.2 4.35 20.5 12.0 54.4 13.9 28.7 5.52

8192,2,128 22.6 40.0 4.43 21.9 50.1 53.2 56.7 28.4 45.1

8192,2,32 11.3 17.6 1.13 12.5 18.0 24.6 19.6 14.2 34.6

8192,2,64 16.0 26.3 2.26 16.3 29.5 38.1 33.4 20.3 40.3

8192,2,128 22.6 40.0 4.43 21.9 50.1 53.2 56.7 28.4 45.1

8192,2,256 32.0 55.3 9.0 28.4 89.6 110.0 108 40.4 49.1

8192,2,512 45.3 79.5 17.6 36.2 166 240.4 214 46.3 61.8

8192,2,128 22.6 40.0 4.43 21.9 50.1 53.2 56.7 28.4 45.1

8192,3,128 50.8 44.5 66.1 92.8 76.9 55.9 37.4

8192,4,128 76.1 64.7 81.5 113.7 98.5 86.6 27.9

8192,5,128 97.0 82.3 94.4 122.4 86.7 107.0 20.3

8192,10,128 158 121.3 128 128.0 90.5 128.0 10.4

Abstract set systems induced by neighborhoods in graphs

Now we turn to experiments on abstract set systems. We will focus on set systems induced by
closed neighborhoods in graphs, which allows us to perform experiments both on large-scale
synthetic data (power-law random graphs), and on real-word network datasets. Given a graph
𝐺 = (𝑉 , 𝐸), the neighborhood set system of 𝐺 is a set system (𝑋, ℱ) with 𝑋 = 𝑉 , and ℱ
consists of closed neighborhoods of vertices, that is, ℱ = {{𝑦 ∈ 𝑉 : (𝑥, 𝑦) ∈ 𝐸} ∪ {𝑥} : 𝑥 ∈
𝑉 }. Our implementation initiates the study of low-crossing partitions for these set systems;
as there are no theoretical guarantee for their existence, we compare our results with 𝑡1−1

𝑑

where 𝑑 is the VC-dimension.²¹

Power-law random graphs. A random graph generated with respect to the power-law
distribution (𝑛, 𝛽) is a graph where the probability for a vertex to have degree 𝑐 ≥ 1 is
proportional to 1

𝑐𝛽 [ACL01]. Coudert et al. [Cou+24] studied the expected VC-dimension of
power-law graphs. We use their average observed VC-dimension to evaluate the crossing
numbers obtained by our algorithms. The results are presented in Table 3.

Table 3: Crossing number and runtime of our algorithms on the power-law graph neighbor-
hood set system.

input
n,𝛽,t

VC-dim
[Cou+24] 𝑡1−1/𝑑 Min Weight

𝜅ℱ runtime (s)
Part At Once

𝜅ℱ runtime (s)

2000,2,32 5.2 16.43 10.4 0.0139 18.05 0.00837

²¹Note that the neighborhood set system of a graph is self-dual, thus 𝑑 is equal to the dual VC-dimension
as well.

76

5 A greedy algorithm for low-crossing partitions for general set systems

input
n,𝛽,t

VC-dim
[Cou+24] 𝑡1−1/𝑑 Min Weight

𝜅ℱ runtime (s)
Part At Once

𝜅ℱ runtime (s)

2000,2.5,32 3.8 12.85 8.0 0.0132 15.5 0.00789

2000,3,32 3 10.08 6.1 0.0128 13.5 0.00762

2000,2,128 5.2 50.35 17.25 0.0206 28.5 0.0251

2000,2.5,128 3.8 35.7 10.3 0.0181 20.4 0.0237

2000,3,128 3 25.4 6.8 0.017 15.8 0.0227

2000,2,512 5.2 154.3 18.1 0.0398 31.35 0.0908

2000,2.5,512 3.8 99.15 10.1 0.0335 20.2 0.0865

2000,3,512 3 64.0 6.7 0.0293 14.8 0.0824

4000,2,32 5.8 17.61 10.95 0.0682 19.9 0.0171

4000,2.5,32 4.05 13.6 8.0 0.0682 17.1 0.0157

4000,3,32 3 10.08 6.3 0.0664 14.4 0.0152

4000,2,128 5.8 55.45 20.95 0.0845 34.55 0.0524

4000,2.5,128 4.05 38.63 12.2 0.0796 24.6 0.0478

4000,3,128 3 25.4 8.2 0.0812 18.1 0.0461

4000,2,512 5.8 174.6 26.4 0.145 51.0 0.189

4000,2.5,512 4.05 109.7 12.3 0.127 26.5 0.174

4000,3,512 3 64.0 8.1 0.116 18.2 0.169

30000,2,32 6.8 19.22 11.0 11.1 23.8 0.782

30000,2.5,32 4.75 15.43 8.2 11.1 21.2 0.727

30000,3,32 3 10.08 6.2 11.2 17.6 0.707

30000,2,128 6.8 62.71 24.3 12.0 51.7 1.52

30000,2.5,128 4.75 46.09 13.2 11.8 37.4 1.42

30000,3,128 3 25.4 8.8 11.8 24.2 1.35

30000,2,512 6.8 204.6 49.2 13.5 175.8 3.6

30000,2.5,512 4.75 137.7 18.0 13.2 51.2 3.54

30000,3,512 3 64.0 9.2 12.9 28.8 3.44

The crossing numbers that our algorithms obtain are comparable to 𝑡1−1
𝑑 . This suggests that

low-crossing partitions might exist in abstract set systems. Similarly to the geometric case,
Min Weight obtains the best crossing number among the different variants and the best
runtime is obtained with Part At Once due to its parallel execution.

Finally, we tested our algorithms on two real world network datasets.

77

5 A greedy algorithm for low-crossing partitions for general set systems

Facebook social circles. We ran our algorithms on set systems generated from a graph
representing the friendships between Facebook users. We use the data set from McAuley and
Leskovec [ML12], which is composed of the network induced by the friends of 10 users. The
graph is composed of 4039 nodes and 88234 edges. The VC-dimension of this graph is 6
[Cou+24]. Given a graph 𝐺 = (𝑉 , 𝐸) and a radius 𝑟 ∈ ℕ, we now study the set system with
base set 𝑉 , where each vertex 𝑣 ∈ 𝑉 defines a range containing all elements at distance at
most 𝑟 from 𝑣 in 𝐺, that is, our set of ranges is defined as ℱ = {{𝑦 ∈ 𝑉 : dist𝐺(𝑥, 𝑦) ≤ 𝑟} :
𝑥 ∈ 𝑉 }. We compile the results obtained for experiments on social network data in Table 4.

Table 4: Crossing number and runtime of our algorithms on the power-law graph neighbor-
hood set system.

input
r,t

Min Weight
𝜅ℱ runtime (s)

Part At Once
𝜅ℱ runtime (s)

1,10 6 0.0677 10 0.0213

1,20 7 0.0709 14 0.0286

1,40 9 0.0949 17 0.0364

2,10 7 0.115 7 0.324

2,20 6 0.188 10 0.431

2,40 10 0.334 14 0.468

3,10 6 0.146 6 0.487

3,20 7 0.247 8 0.618

3,40 9 0.422 9 0.683

The graph upon which we build our set system is relatively sparse: the average degree is 21.84,
but the maximum degree is 1045. We observe that our crossing numbers are consistently below
the 𝑡1−1

𝑑 bound, where 𝑑 is the VC-dimension of the graph.

ArXiv co-authorship graph. We also did experiments on the neighborhood set system of the
collaboration graph from the High Energy Physics - Phenomenology arXiV subject [LKF07].
It is composed of 12008 nodes and 118521 edges, with a maximum degree of 491 and VC-
dimension 5 [Cou+24]. We ran experiments with higher values of 𝑡 and observe that the
crossing numbers remain low.

Table 5: Crossing number and runtime for our algorithms on the ArXiv co-authorship graph.

input
r,t

Min Weight
𝜅ℱ runtime (s)

Part At Once
𝜅ℱ runtime (s)

1,50 12 0.973 21 0.182

1,100 16 1.08 28 0.256

1,200 19 1.17 34 0.373

1,500 26 1.46 41 0.74

2,50 30 1.6 42 0.885

78

5 A greedy algorithm for low-crossing partitions for general set systems

input
r,t

Min Weight
𝜅ℱ runtime (s)

Part At Once
𝜅ℱ runtime (s)

2,100 48 2.3 69 1.03

2,200 73 3.8 118 1.42

2,500 121 7.29 254 1.94

3,50 41 4.04 49 2.42

3,100 72 7.01 90 3.0

3,200 126 12.8 172 4.06

3,500 287 29.3 384 5.71

Finite projective planes

Projective planes of order 𝑎 ∈ ℕ are a set of points 𝑋 and lines ℱ with the following
properties:

• |𝑋| = |ℱ| = 𝑎2 + 𝑎 + 1,
• ∀𝑥 ∈ 𝑋, |{𝐹 ∈ ℱ : 𝑥 ∈ 𝐹}| = 𝑎 + 1,
• ∀𝐹 ∈ ℱ, |𝐹 ∩ 𝑋| = 𝑎 + 1.

Alon, Haussler and Welzl [AHW87] showed that for 𝑡 = 𝑂(
√

𝑛), finite projective planes do
not admit partitions of size 𝑡 with sublinear crossing number even though these set systems
have VC-dimension 2. We tested our algorithms on the embedding of projective planes in
dimension 3, that is 𝑋 ⊆ ℕ3 and lines are constructed to meet properties 2 and 3. We only
implemented this sets system for prime orders as this embedding does not work with some
non-primes order. The data for our experiments on projective planes of order 233 is in Table 6.

Table 6: Crossing number and runtime of our algorithms on the power-law graph neighbor-
hood set system.

input
n,t

Part At Once
𝜅𝐹

54523,200 185

54523,500 229

54523,1000 234

54523,2000 234

As expected our algorithms obtains the maximum intersection number for high number of
partitions.

𝜀-Approximations

As explained in Section 1.3, low-crossing partitions are a way to compute 𝜀-approximation.

We compare the error factor 𝜀 = max𝐹∈ℱ| |𝐹 |
|𝑋| − |𝐹∩𝐴|

|𝐴| | obtained with random sample of size 𝑡
as well as those obtained with an approximation constructed from a 𝑡-partition on our different

79

5 A greedy algorithm for low-crossing partitions for general set systems

algorithms over the grid set system. The results are compiled in Figure 12. Talagrand [Tal94]
showed that a uniform random sample of size 𝑡 is an 𝑂(1√

𝑡)-approximation.

Figure 12: Value of the error factor 𝜀 for varying 𝑡 on the 2-dimensional grid set system on
top and 𝑑 on 64 parts of the 𝑑-dimensional grid set system on the bottom. The grey curves
represent 1√

𝑡 and 1
√𝑡

𝑑+1
𝑑

 which are respectively the expected error factor for a uniform random

sample of size 𝑡 and the optimal error factor for the 𝑑-dimensional grid sets system

As we can see, our algorithms outperform the random sample (in blue) and, in particular, Min
Weight and Greedy Potential obtain an error factor close to the optimal one 1

√𝑡
𝑑+1

𝑑
 [Ale90]

(see the known bounds section of [Mus22] for a sketch of the proof). The raw data for the
experiment is available in Table 7 below.

Table 7: max𝐹∈ℱ| |𝐹 |
|𝑋| − |𝐹∩𝐴|

|𝐴| | for our algorithms on the grid set system averaged over 10 runs.

input
n,d,t

Random Sample
Error Factor

Min Weight
Error Factor

Greedy Potential
Error Factor

Part At Once
Error Factor

8192,2,16 0.2292 0.1526 0.2078 0.164

8192,2,32 0.1747 0.09839 0.1407 0.0994

8192,2,64 0.114 0.05889 0.08621 0.06064

8192,2,128 0.08704 0.03281 0.0569 0.03748

8192,2,256 0.05892 0.02216 0.0317 0.02366

8192,3,16 0.2463 0.1723 0.2419 0.1819

8192,3,32 0.1801 0.1191 0.1507 0.1264

8192,3,64 0.1177 0.07119 0.1021 0.07696

8192,3,128 0.08575 0.04354 0.07006 0.05057

8192,3,256 0.05213 0.03263 0.04526 0.03157

8192,4,16 0.2458 0.1634 0.2327 0.2001

80

5 A greedy algorithm for low-crossing partitions for general set systems

input
n,d,t

Random Sample
Error Factor

Min Weight
Error Factor

Greedy Potential
Error Factor

Part At Once
Error Factor

8192,4,32 0.1755 0.1268 0.158 0.1286

8192,4,64 0.1243 0.08322 0.1005 0.08251

8192,4,128 0.08316 0.05443 0.07637 0.04983

8192,4,256 0.05478 0.03888 0.04963 0.03499

8192,5,16 0.2475 0.1915 0.2046 0.2068

8192,5,32 0.1695 0.1139 0.177 0.1297

8192,5,64 0.116 0.07838 0.1028 0.08718

8192,5,128 0.08529 0.05586 0.08562 0.05641

8192,5,256 0.06015 0.04 0.04855 0.0391

8192,10,16 0.2305 0.1811 0.2308 0.2069

8192,10,32 0.1787 0.1383 0.1806 0.1352

8192,10,64 0.1165 0.1005 0.1301 0.1064

8192,10,128 0.08591 0.06522 0.0825 0.0649

8192,10,256 0.06065 0.0462 0.05548 0.03805

81

Chapter 6

Near-Minimal 𝛿-Coverings of Finite VC-di-
mension Set Systems and Applications
This chapter, combines several tools and techniques to give new algorithms to compute low-
discrepancy colorings of finite VC-dimension set systems. We aim to give a self-contained
picture of the state-of-the-art algorithms to compute optimal discrepancy colorings of finite
VC-dimension set systems.

The only method known to obtain low-discrepancy colorings of finite primal VC-dimension
set systems is to compute small-size 𝛿-coverings and use the chaining technique. We present
improvements on the trivial algorithms to obtain small-size coverings and give a complete
picture of the algorithms and their complexities to derive low-discrepancy colorings from
small-size colorings.

We will present algorithms to compute near-minimal 𝛿-coverings of finite VC-dimension set
systems. We define them below.

Definition 6.1. ((𝛿1, 𝛿2)-covering) Let (𝑋, ℱ) be a finite set system and 𝛿2 ≤ 𝛿1 ≤ 𝑛.
A (𝛿1, 𝛿2)-covering of (𝑋, ℱ) is a collection 𝒞 ⊆ ℱ such that 𝒞 is a 𝛿1-covering and a 𝛿2
-packing of (𝑋, ℱ).

We say that a (𝛿1, 𝛿2)-covering is a near-minimal 𝛿-covering iff 𝛿2 = Θ(𝛿1).

Near-minimal coverings are practically equivalent to minimal coverings for most applications
that require minimal coverings as the bound on their size is equal up to some constant.

In Section 6.1, we present our main algorithm that computes a (𝛿, 𝛿
4)-covering of a set system

with finite VC-dimension. This is the first instance of a non-trivial algorithm that computes
𝛿-coverings of size matching Haussler’s bound. In Section 6.3, we present variations of our
main algorithm for specific types of finite VC-dimension set systems. We summarize the
time complexity of our algorithms compared to the previous best known algorithms in the
following table.

Algorithm
Size of

𝛿-covering
Time complexity

General set systems

[MWW93] 𝑂((𝑛
𝛿 log(𝑛

𝛿))𝑑) 𝑂(𝑚𝑑𝑛
𝛿 log(𝑛

𝛿) + 𝑑𝑛𝑑

𝛿𝑑 log𝑑+1(𝑛
𝛿))

Greedy covering
(Section 3.3.1.1)

𝑂((𝑛
𝛿)𝑑) 𝑂(𝑚𝑛𝑑+1

𝛿𝑑)

82

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

Algorithm
Size of

𝛿-covering
Time complexity

Algorithm 14 𝑂((𝑛
𝛿)𝑑) 𝑂(𝑚𝑑𝑛

𝛿 log(𝑛
𝛿) + (𝑛

𝛿)2𝑑+2 log𝑑(𝑛
𝛿))

Halfspaces

[Mat92] 𝑂((𝑛
𝛿)𝑑) 𝑂(𝑑(𝑛 + 𝑚) + 𝑛𝑑 + 𝑚 log(𝑛))

[Mat92]
(fast variation²²)

𝑂((𝑛
𝛿)𝑑) 𝑂(𝑑𝑛 + 𝑛𝑑

𝛿𝑑−1 + 𝑑3(𝑛
𝛿)𝑑)

Algorithm 18 𝑂((𝑛
𝛿)𝑑) 𝑂(𝑚 ln(𝑚)𝑛𝑑

𝛿2𝑑+2)

Balls

[Mat92] + Veronese
maps²³

𝑂((𝑛
𝛿)𝑑+1) 𝑂(𝑑(𝑛 + 𝑚) + 𝑛𝑑+1 + 𝑚 log(𝑛))

Algorithm 17 𝑂((𝑛
𝛿)𝑑) 𝑂((𝑛𝑑

𝛿)2𝑑+2 log𝑑(𝑛𝑑
𝛿))

In Section 6.2, we present two applications of our near-minimal covering algorithm. First
we show that combining our algorithm with the Lovett-Meka discrepancy algorithm [LM15]
and chaining as presented in [Mat95] gives the current fastest algorithm to obtain optimal
discrepancy colorings for finite VC-dimension set systems. We also show that our algorithm
can be used to improve the runtime of the naive algorithm to verify whether a given subset
of 𝑋 is an 𝜀-approximation of it.

6.1 A near-minimal covering algorithm for finite VC-dimension set
systems

In this section, we present our main covering algorithm for finite VC-dimension set systems.
The algorithm we present computes a (𝛿, 𝛿

4)-covering of a set system with finite VC-dimen-
sion. We recall that this means that the algorithm constructs a 𝛿-covering that is also a 𝛿

4
-packing. We first explain with a simple construction why we followed this approach.

6.1.1 Motivation of our approach
Maximal 𝛿-packings are 𝛿-coverings, that is, they are (𝛿, 𝛿)-coverings. However there exists
minimal 𝛿-coverings that are not 𝛿-packings. We show, in Claim 6.2, that there exists minimal
𝛿-coverings with arbitrarily close ranges.

²²See details in Remark 3.21
²³See section 10.3 of [Mat13] for information on Veronese maps

83

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

Claim 6.2. Let 𝑋 = [1, …, 𝑛], ∀𝜀 > 1 and 𝛿 ≥ 1 s.t. 2𝛿 + 𝜀 ≤ 𝑛, there exists a collection
of four ranges ℱ of 𝑋 s.t. ℱ admits a minimal 𝛿-covering 𝒞 with

min
𝐶1≠𝐶2∈𝒞

|Δ(𝐶1, 𝐶2)| = 𝜀.

Figure 13: ℱ as dots with euclid-
ean distance representing sym-

metric difference

Proof. Consider the collection

ℱ = {𝐴 = {1, …, 𝑛},
𝐵 = {𝛿 + 1, …, 𝑛},
𝐶 = {𝛿 + 𝜀 + 1, …, 𝑛},
𝐷 = {2𝛿 + 𝜀 + 1, …, 𝑛}}.

We show that 𝒞 = {𝐵, 𝐶} satisfies Claim 6.2.

Since |Δ(𝐴, 𝐵)| = |Δ(𝐶, 𝐷)| = 𝛿, 𝐵 covers 𝐴 and
itself and 𝐶 covers 𝐷 and itself. Thus 𝒞 is a 𝛿-
covering of ℱ.

Since |Δ(𝐵, 𝐷)| = |Δ(𝐴, 𝐶)| = 𝜀 + 𝛿, if either 𝐵
or 𝐶 were to be removed from 𝒞, 𝐴 or 𝐷 would
not be covered anymore. Thus 𝒞 is a minimal 𝛿-
covering.

Finally, min𝐶1≠𝐶2∈𝒞|Δ(𝐶1, 𝐶2)| = |Δ(𝐵, 𝐶)| = 𝜀.
□

In the set system we detail in the proof of Claim 6.2, {𝐴, 𝐶}, {𝐴, 𝐷} and {𝐵, 𝐷} are
also minimal 𝛿-coverings but, unlike {𝐵, 𝐶}, are also 𝛿-packings. Constructing minimal 𝛿-
coverings that are not 𝛿-packings can prove to be rather difficult as they do not have as much
structure as 𝛿-packings. This is why our focus for efficiently building minimal 𝛿-coverings is
to find coverings with packing properties as well.

6.1.2 Our Algorithm
We now present our near-minimal covering algorithm. This algorithm uses the fast 𝛿-covering
construction of [MWW93] presented in Section 3.3.1.2. It then prunes the ranges that are
redundant in the covering obtained.

84

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

Algorithm 14: (𝛿, 𝛿
4)-covering algorithm

Input: (𝑋, ℱ), 𝛿
1 𝒞 ← 𝛿

2-covering obtained with Algorithm 3
2 ℛ ← ∅
3 𝐴 ← 𝛿

8𝑛-approximation of (𝑋, ℱ)
4 for 𝐶 ∈ 𝒞 do
5 if ∀𝑅 ∈ ℛ, |Δ(𝐶, 𝑅) ∩ 𝐴| ≥ 3𝛿

8|𝐴| then
6 ℛ ← ℛ ∪ {𝐶}
7 return ℛ

This algorithm performs pruning in a greedy manner. Starting from the covering obtained
from Section 3.3.1.2, we add a range to our final construction only if it is not already covered
by some range previously added to our construction. In addition to simply verifying whether
a range is covered by another one, we approximate the symmetric difference between ranges
using an 𝜀-approximation. We show the following theorem.

Theorem 6.3. Given a set system (𝑋, ℱ) with VC-dimension at most 𝑑 and 𝛿 ∈ [4, 𝑛],
Algorithm 14 returns a near-minimal (𝛿, 𝛿

4)-covering with probability at least 1
2 . More-

over, it has time complexity 𝑂(𝑚𝑑𝑛
𝛿 log(𝑛

𝛿) + (𝑛
𝛿)2𝑑+2 log𝑑(𝑛

𝛿)).

Proof. Since 𝒞 is a sub-set system of (𝑋, ℱ), the VC-dimension of (𝑋, 𝒞) is at most 𝑑. By
definition of a 𝛿

8𝑛-approximation, for all 𝐶, 𝐶′ ∈ 𝒞,

|Δ(𝐶, 𝐶′)| ≥ |Δ(𝐶, 𝐶′) ∩ 𝐴‖𝐴| − 𝛿
8
.

Thus any 𝐶 ∈ 𝒞 added to ℛ is such that:

∀𝑅 ∈ ℛ, |Δ(𝑅, 𝐶)| ≥ 3𝛿
8|𝐴|

|𝐴| − 𝛿
8

= 𝛿
4

i.e. ℛ is a 𝛿
4-packing.

The 𝜀-approximation also guarantees that:

|Δ(𝐶, 𝐶′)| ≤ |Δ(𝐶, 𝐶′) ∩ 𝐴‖𝐴| + 𝛿
8
.

That is,

∀𝐶 ∈ 𝒞, ∃𝑅 ∈ 𝑅 (eventually itself) s.t. |Δ(𝑅, 𝐶)| ≤ 3𝛿
8|𝐴|

|𝐴| + 𝛿
8

= 𝛿
2

i.e. ℛ is a 𝛿
2-covering of (𝑋, 𝒞).

Let 𝐹 ∈ ℱ, since 𝒞 is a 𝛿
2-covering of (𝑋, ℱ), ∃𝐶 ∈ 𝒞 s.t. |Δ(𝐹 , 𝐶)| ≤ 𝛿

2 . The triangular
inequality implies that

85

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

∀𝐹 ∈ ℱ, ∃𝐶 ∈ 𝒞, 𝑅 ∈ ℛ s.t. |Δ(𝐹 , 𝑅)| ≤ |Δ(𝐹 , 𝐶)| + |Δ(𝐶, 𝑅)| ≤ 𝛿
2

+ 𝛿
2

= 𝛿.

Thus, ℛ is a 𝛿-covering of (𝑋, ℱ).

Runtime analysis. By Lemma 3.10 and Corollary 3.6, 𝐴 can be constructed by sampling
𝑂(𝑑𝑛2

𝛿2) points from 𝑋 with probability at least 1√
2 .

Theorem 3.16 states that computing a 𝛿
2-covering with Algorithm 3 has time complexity

𝑂(𝑚𝑑𝑛
𝛿

log(𝑛
𝛿
) + 𝑑𝑛𝑑

𝛿𝑑 log𝑑+1(𝑛
𝛿
)) (21)

and that |𝒞| = 𝑂((𝑛
𝛿 log(𝑛

𝛿))𝑑). By Haussler’s packing lemma, |ℛ| = 𝑂((𝑛
𝛿)𝑑). Therefore,

the loop of Algorithm 14 has time complexity

𝑂(|𝒞‖ℛ‖𝐴|) = 𝑂((𝑛
𝛿

log(𝑛
𝛿
))

𝑑
(𝑛

𝛿
)

𝑑
𝑑(𝑛

𝛿
)

2
) = 𝑂(𝑑(𝑛

𝛿
)

2𝑑+2
log𝑑(𝑛

𝛿
)). (22)

Adding (21) and (22) finishes the proof. □

6.2 Applications of our 𝛿-covering algorithm

6.2.1 Application to low-discrepancy colorings computation
We now explain some applications of the covering algorithm we presented. The first appli-
cation that we present is low-discrepancy colorings for finite VC-dimension set systems. We
will present two algorithms that use our covering algorithms to compute the ranges to use as
constraints with Algorithm 5.

We first explain a simpler version of the complete algorithm that does not use chaining and
obtains a coloring with discrepancy 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛)).

Obtaining a polylog approximation of the optimal discrepancy for finite VC-dimen-
sion set systems

The following algorithm produces a coloring with polylog approximation of the optimal
discrepancy of finite VC-dimension set systems, i.e. a coloring with for all 𝐹 ∈ ℱ, 𝜒(𝐹) =
𝑂̃(𝑛1

2− 1
2𝑑).

Algorithm 15: Polylog approximation of low-discrepancy coloring for finite VC-dimension
set systems

Input: (𝑋, ℱ)
1 𝒞 ← (26

𝑑+2𝑐
1
𝑑
H𝑛1−1

𝑑 , 26
𝑑 𝑐

1
𝑑
H𝑛1−1

𝑑)-covering of (𝑋, ℱ) computed with Algorithm 14

2
return complete coloring 𝜒 computed with Algorithm 5 with constraints for all 𝐶 ∈
𝒞, 𝜒(𝐶) = 0

86

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

This algorithm produces a near-minimal 𝛿-covering of the set system using Algorithm 14 and
then uses the ranges of the covering as constraints with Algorithm 5. We prove the following
theorem.

Application 6.4. (of Theorem 6.3) Given a set system (𝑋, ℱ), Algorithm 15 returns a
coloring 𝜒 : 𝑋 → {−1, 1} such that:

disc𝜒(𝑋, ℱ) = 𝑂(𝑛1
2− 1

2𝑑 log5
2 (𝑚𝑛))

with probability at least 14 . The algorithm has time complexity 𝑂̃(𝑚𝑛1
𝑑 + 𝑛2+2

𝑑 log𝑑(𝑛) +
𝑛3).

Proof. Haussler’s packing lemma gives that 𝒞 has size at most 𝑛
32 . Therefore, the entropy

condition of Theorem 3.23 is satisfied since:

∑
𝐶∈𝒞

exp(−02

16
) = |𝒞| ≤ 𝑛

32
< 𝑛

16
.

Let 𝐹 ∈ ℱ, since 𝒞 is a 26
𝑑+2𝑐

1
𝑑
H𝑛1−1

𝑑 -covering, there exists 𝐶 ∈ 𝒞 s.t.

|Δ(𝐶, 𝐹)| ≤ 26
𝑑+2𝑐H𝑛1−1

𝑑 .

That is, we have:

𝜒(𝐹) ≤ 𝜒(𝐶)⏟
=0

+ 𝜒(𝐶 \ 𝐹) + 𝜒(𝐹 \ 𝐶)

≤ 8√|Δ(𝐹 , 𝐶)| log(𝑚) log(𝑛)√ln(8𝑚 log(𝑛))

≤ 23
𝑑+4𝑐

1
2𝑑
H 𝑛1

2− 1
2𝑑 log(𝑚) log(𝑛)√ln(8𝑚 log(𝑛))

with probability at least 1 − 1
2𝑚 .

The bound on 𝜒(𝐶 \ 𝐹) and 𝜒(𝐹 \ 𝐶) comes from Corollary 3.25 (𝜈 = 𝑛
8).

The union bound over all ranges of ℱ gives the statement of the theorem and the time
complexity simply follows from the complexities of Algorithm 5 and Algorithm 14. □

Obtaining optimal discrepancy for finite VC-dimension set systems using chaining

The construction from the previous section is not optimal as proven in [BC86]. We see that
some ranges have 0 discrepancy whilst all the other ranges have large discrepancy. We aim
to reduce the gap between the discrepancy of ranges in the covering and the discrepancy of
ranges outside of it.

We can compute a coloring with a discrepancy bound without the polylog factor. This is
attained using the same method that enabled Matoušek [Mat95] to improve on Matoušek,
Welzl and Wernisch’s result [MWW93]: using chaining (see Section 3.4.2). This leads to
Algorithm 16 presented below.

87

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

Algorithm 16: Low-discrepancy coloring for finite VC-dimension set systems

Input: (𝑋, ℱ)

1
∀𝑖 ∈ [0, 𝑟] : 𝒞𝑖 ← (26

𝑑+2−𝑖𝑐
1
𝑑
H𝑛1−1

𝑑 , 26
𝑑−𝑖𝑐

1
𝑑
H𝑛1−1

𝑑)-covering of (𝑋, ℱ) computed with Al-

gorithm 14, where 𝑟 = 2 log(log(𝑚) log(𝑛)√log(𝑚𝑛 log(𝑛)))
2 ∀𝑖 ∈ [0, 𝑟] : 𝒜𝑖 = {𝐶 \ 𝐶′ : 𝐶 ∈ 𝒞𝑖, 𝐶′ ∈ 𝒞𝑖+1 s.t. Δ(𝐶, 𝐶′) ≤ 26

𝑑+2−𝑖𝑐
1
𝑑
H𝑛1−1

𝑑 }

3 ∀𝑖 ∈ [0, 𝑟] : ℬ𝑖 = {𝐶′ \ 𝐶 : 𝐶 ∈ 𝒞𝑖, 𝐶′ ∈ 𝒞𝑖+1 s.t. Δ(𝐶, 𝐶′) ≤ 26
𝑑+2−𝑖𝑐

1
𝑑
H𝑛1−1

𝑑 }

4
return complete coloring 𝜒 computed with Algorithm 5 with constraints ∀𝐶 ∈ 𝐶0, 𝜒(𝐶) =
0, ∀𝑖 ∈ [0, 𝑟 − 1], 𝜒(𝐴𝑖) = 𝜒(𝐵𝑖) = 𝐾2

𝑖
2

(1+𝑖)2 for some large constant 𝐾 .

This algorithm computes multiple packings in order to bound the discrepancy of smaller and
smaller difference sets. This has to be done until the difference sets are small enough for their
random discrepancy bound to be small enough. This means that we will compute a family
of near-minimal coverings using our algorithm and will use these coverings with carefully
chosen constraints in Algorithm 5. We prove the following theorem.

Application 6.5. (of Theorem 6.3) Given a set system (𝑋, ℱ) with finite VC-dimension
≤ 𝑑 such that 𝑛 ≫ 𝑑, Algorithm 16 returns a coloring 𝜒 : 𝑋 → {−1, 1} such that:

disc𝜒(𝑋, ℱ) = 𝑂(𝑛1
2− 1

2𝑑)

with probability at least 14 . The algorithm has time complexity

𝑂̃(𝑚𝑛1
𝑑 + 𝑛2+2

𝑑 log𝑑(𝑛) + 𝑛3 log3𝑑(𝑚𝑛) log3𝑑(log(𝑚𝑛))).

Proof. Haussler’s packing lemma gives that for all 𝑖 ∈ [0, 𝑟], 𝒞𝑖 has size at most 𝑛2𝑖𝑑

32 . Therefore,

∑
𝑟−1

𝑖=0
(|𝒜𝑖| + |ℬ𝑖|) exp(− 𝐾22𝑖

16(1 + 𝑖)4) = ∑
𝑟−1

𝑖=0
2|𝒞𝑖| exp(− 𝐾22𝑖

16(1 + 𝑖)4)

= 2 ∑
𝑟−1

𝑖=0

𝑛2𝑖𝑑

32
exp(− 𝐾22𝑖

16(1 + 𝑖)4)

= 𝑛
16

∑
𝑟−1

𝑖=0
2𝑖𝑑 exp(− 𝐾22𝑖

16(1 + 𝑖)4)

= 𝑛
16

∑
𝑟−1

𝑖=0
exp(𝑖𝑑 ln(2) − 𝐾22𝑖

16(1 + 𝑖)4). (23)

By setting 𝐾 large enough, we can ensure that

∀𝑖 ∈ [1, 𝑟], exp(𝑖𝑑 ln(2) − 𝐾22𝑖

16(1 + 𝑖)4) ≤ 6
𝜋2(1 + 𝑖)2 . (24)

88

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

Using (24) in (23) yields:

∑
𝑟

𝑖=0
|𝒞𝑖| exp(− 𝐾22𝑖

16(1 + 𝑖)4) ≤ 𝑛
16

∑
𝑟−1

𝑖=0

6
𝜋2(1 + 𝑖)2

≤ 𝑛
16

∑
∞

𝑖=0

6
𝜋2(1 + 𝑖)2

≤ 𝑛
16

.

that is, the entropy condition of Theorem 3.23 is satisfied.

Similarly to Matoušek, we decompose each range of ℱ in a sum of disjoint error sets computed
between the range and a range from each near-minimal covering i.e.

∀𝐹 ∈ ℱ, ∃𝐴0 ∈ 𝒜0, 𝐵0 ∈ ℬ0, …, 𝐴𝑟 ∈ 𝒜𝑟, 𝐵𝑟 ∈ ℬ𝑟 s.t.
𝐹 = (…(((𝐴1 \ 𝐵1) ∪ 𝐴2) \ 𝐵2) ∪ …𝐴𝑟) \ 𝐵𝑟.

That is, we have:

∀𝐹 ∈ ℱ, 𝜒(𝐹) ≤ ∑
𝑟−1

𝑖=0
[𝜒(𝐴𝑖) + 𝜒(𝐵𝑖)] + 𝜒(𝐴𝑟) + 𝜒(𝐵𝑟)

≤ 2 ∑
𝑟−1

𝑖=0
[√|𝐴𝑖|

𝐾2 𝑖
2

(1 + 𝑖)2] + 8√|𝐴𝑟| log(𝑚) log(𝑛)√ln(𝑚𝑛 log(𝑛))

≤ ∑
𝑟−1

𝑖=0
[23

𝑑+1− 𝑖
2 𝑐

1
2𝑑
H 𝑛1

2− 1
2𝑑

𝐾2 𝑖
2

(1 + 𝑖)2] +
8𝑛1

2− 1
2𝑑 log(𝑚) log(𝑛)√ln(𝑚𝑛 log(𝑛))

log(𝑚) log(𝑛)√ln(𝑚𝑛 log(𝑛))

≤ 23
𝑑+1𝑐

1
2𝑑
H 𝑛1

2− 1
2𝑑 𝐾 ∑

𝑟−1

𝑖=0
[1
(1 + 𝑖)2] + 8𝑛1

2− 1
2𝑑

≤ 23
𝑑+1𝑐

1
2𝑑
H 𝑛1

2− 1
2𝑑 𝐾 ∑

∞

𝑖=0
[1
(1 + 𝑖)2] + 8𝑛1

2− 1
2𝑑

≤ 23
𝑑+1𝑐

1
2𝑑
H 𝑛1

2− 1
2𝑑 𝐾 𝜋2

6
+ 8𝑛1

2− 1
2𝑑 = 𝑂(𝑛1

2− 1
2𝑑).

The bound on 𝜒(𝐴𝑟) + 𝜒(𝐵𝑟) is obtained with Corollary 3.25 (𝜈 = 1) with probability at least
1 − 2

𝑛𝑚 .

With the union bound over all sets in 𝒜𝑟 ∪ ℬ𝑟, we obtain the optimal discrepancy bound for

all ranges 𝐹 ∈ ℱ with probability at least 1 − (2 log(𝑚) log(𝑛)√ln(𝑚𝑛 log(𝑛)))
𝑑

8𝑚 . We obtain that this
bound on the probability is at least 12 when 𝑚 = Θ(𝑛𝑑) and 𝑛

log(𝑛) > 2𝑑𝑒−2
5 .

Runtime analysis. Computing the 𝑂(log(log(𝑚𝑛))) coverings using Algorithm 14 with
probability 12 has expected time complexity

𝑂([𝑚𝑛1
𝑑 + 𝑛2+2

𝑑 log𝑑(𝑛)] log(𝑚𝑛)). (25)

Computing for all 𝑖 ∈ [0, 𝑟 − 1], 𝒜𝑖 and ℬ𝑖 has time complexity

89

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

𝑂(𝑛2(log(𝑚) log(𝑛)√log(𝑚𝑛 log(𝑛)))
2𝑑

log(log(𝑚) log(𝑛)√log(𝑚𝑛 log(𝑛)))).

This is negligible compared to computing the coverings.

Finally computing 𝜒 using Algorithm 5, has time complexity

𝑂(𝑛3 log3𝑑(𝑚𝑛) log3𝑑(log(𝑚𝑛))) (26)

as we compute a coloring on n points and 𝑂(𝑛 log𝑑(𝑛) log(log(𝑚𝑛))) constraints. Adding
(25) and (26) together gives the time complexity stated in Application 6.5. □

Remark 6.6. 𝐾 will only depend on 𝑑 and in fact solving (24) gives that 𝐾 = 100
√

𝑑 is
sufficient to ensure the inequality.

Corollary 6.7. Using Algorithm 16 with Theorem 3.32 we obtain that, using the iterated
halving technique, we can compute an 𝜀-approximation of a set system with finite VC-
dimension 𝑑 of size 𝑂(1

𝜀
2𝑑

𝑑+1
) by setting 𝑡 s.t. 2𝑡 = Θ(𝜀 2𝑑

𝑑+1 𝑛).

6.2.2 Verifying a random 𝜀-approximation
Lemma 3.10 shows that one can obtain an 𝜀-approximation of a finite VC-dimension set
system w.h.p. by sampling uniformly elements of the ground set. In this section, we consider
an algorithm to determine whether a given random sample 𝐴 is an 𝜀-approximation of a given
set system.

The naive algorithm to achieve that task would be to verify for each range 𝐹 ∈ ℱ whether
the approximation error | |𝐹 |

|𝑋| − |𝐹∩𝐴|
|𝐴| | is smaller than 𝜀. This method has time complexity

𝑂(𝑚|𝐴|) as verifying one range’s error factor has time complexity 𝑂(|𝐴|) assuming the size
of a range can be known in time 𝑂(1).

The proof of Lemma 3.10 relies on chaining and coverings. They prove that a subset 𝐴 ⊆
𝑋 is an 𝜀-approximation if it is an 𝜀-approximation w.r.t. 𝑛

2𝑖 -coverings of 𝑋 with 0 ≤ 𝑖 ≤
log(1

𝜀). This directly implies that given a subset 𝐴 ⊆ 𝑋, we can verify whether 𝐴 is an 𝜀
-approximation of 𝑋 by computing (𝒞𝑖)1≤𝑖≤ log(1

𝜀) a family of coverings where 𝐶𝑖 is an 𝑛
2𝑖 -

covering of 𝑋 and verifying that 𝐴 is an 𝜀-approximation on these coverings.

Algorithm 14 builds a covering of size 𝑂((𝑛
log(1

𝜀))
𝑑
) in time:

𝑂(𝑚 log(1
𝜀
) log(log(1

𝜀
)) + log𝑑+2(1

𝜀
) log𝑑(log(1

𝜀
))).

Verifying whether a set 𝐴 is an approximation of each range of 𝒞𝑖 has time complexity
𝑂(|𝒞𝑖‖𝐴|). This gives a total time complexity for the construction of the 𝑂(log(1

𝜀)) coverings
and verification for each of them of:

90

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

𝑂
(
(((𝑚 log2(1

𝜀
) log(log(1

𝜀
)) + log𝑑+3(1

𝜀
) log𝑑(log(1

𝜀
)) + (𝑛

log(1
𝜀)

)
𝑑

|𝐴| log(1
𝜀
)
)
))).

This improves on the time complexity of the naive algorithm when 𝑚 = Θ(𝑛𝑑) and |𝐴| =
𝑂(1

𝜀2) as we obtain a time complexity of 𝑂(𝑚|𝐴|
log𝑑−1(1

𝜀)).

6.3 Variations of our 𝛿-covering algorithm for specific types of set
systems

6.3.1 Geometric set systems with a conforming map
In this section, we discuss improvements on the runtime of Algorithm 14 for geometric set
systems with a conforming map. These improvements use ideas presented in [MP19].

Conforming maps emerge naturally when working with geometric set systems. They repre-
sent the idea that the geometric objects spanning the set system are determined by a finite
number of points. This concept is sometimes called the degrees of freedom of a geometric
object. For instance, halfspaces in ℝ𝑑 are determined by at most 𝑑 + 1 points. Assuming
general position, a consequence is that any halfspace that contains any 𝑑 + 1 points of 𝑋 will
also contain all the other points of 𝑋 corresponding to the halfspace determined by these 𝑑 +
1 points²⁴.

Definition 6.8. A geometric conforming map 𝜓 : 2𝑋 → 2𝑋 of size 𝑑 ∈ ℕ has the follow-
ing properties:

(i) ∀𝑁 ⊂ 𝑋, ∀𝐸 ∈ ℱ, 𝜓(𝐸 ∩ 𝑁) ∩ 𝑁 = 𝐸 ∩ 𝑁
(ii) ∀𝐸 ∈ ℱ, ∃𝐸′ ⊆ 𝐸, |𝐸′| ≤ 𝑑 s.t. 𝜓(𝐸′) = 𝐸

Remark 6.9. The computation of conforming map is, in general, non-trivial. We denote
the runtime of its computation with 𝑇|𝐸| as its runtime depends, in the cases we present,
on the size of 𝐸.

To compute near-minimal 𝛿-coverings of set systems admitting a conforming map, we will
use the following algorithm.

²⁴The reader may refer to [MP19] for more about conforming maps and examples.

91

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

Algorithm 17: (𝛿, 𝛿
4)-covering algorithm using conforming maps

Input: (𝑋, ℱ), 𝛿, 𝜓
1 𝒞 ← ∅
2 𝑁 ← 𝛿

2𝑛-net of (𝑋, Δ(ℱ))
3 for 𝐸 ∈ ℰ = {𝑆 ∈ 2𝑁 s.t. |𝑆| ≤ 𝑑} do
4 𝒞 ← 𝒞 ∪ {𝜓(𝐸)}
5 𝐴 ← 𝛿

8𝑛-approximation of (𝑋, ℱ)
6 for 𝐶 ∈ 𝒞 do
7 if ∀𝑅 ∈ ℛ, |Δ(𝐶, 𝑅) ∩ 𝐴| ≥ 3𝛿

8|𝐴| then
8 ℛ ← ℛ ∪ {𝐶}
9 return ℛ

In Algorithm 17, instead of building a 𝜀-net to select candidate ranges for our near-minimal
covering, we list all subsets of the ground set of size at most 𝑑 and select the unique range
determined by each subset. We will prove the following theorem.

Theorem 6.10. Given (𝑋, ℱ) a set system with finite VC-dimension 𝑑 such that there
exists a conforming map 𝜓(𝐸) : 2𝑋 → ℱ of size 𝑑 with computational time complexity
𝑇𝑑 for |𝐸| ≤ 𝑑. Algorithm 17 returns a near-minimal (𝛿, 𝛿

4)-covering of (𝑋, ℱ) with
probability at least 12 . The time complexity of the algorithm is

𝑂(𝑇𝑑(𝑛𝑑
𝛿

)
𝑑

log𝑑(𝑛𝑑
𝛿

) + (𝑛𝑑
𝛿

)
2𝑑+2

).

Proof of Theorem 6.10. Algorithm 17 uses the same principle than Algorithm 14 as we first
construct a covering and then prune it greedily whilst approximating the symmetric differ-
ence. This is why, in the proof, we simply show that the construction of 𝒞 leads to a 𝛿2-covering
of the same size than Algorithm 4. Proving that Algorithm 17 constructs a (𝛿, 𝛿

4)-covering
from 𝒞 follows the exact same steps than the proof of Theorem 6.3.

We first show that 𝒞 is a 𝛿
2-covering of (𝑋, ℱ).

Let 𝐹 ∈ ℱ be any range of (𝑋, ℱ).

• If |𝐹 ∩ 𝑁| ≤ 𝑑, ∃𝐸 ∈ ℰ s.t. 𝐹 ∩ 𝑁 = 𝐸.

𝐹 ∩ 𝑁 = 𝐸
⇒ 𝜓(𝐹 ∩ 𝑁) = 𝜓(𝐸)

⇒ 𝜓(𝐹 ∩ 𝑁) ∩ 𝑁 = 𝜓(𝐸) ∩ 𝑁
⇒ 𝐹 ∩ 𝑁 = 𝜓(𝐸) ∩ 𝑁.

The last step follows from property (i) of conforming maps.

92

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

• If |𝐹 ∩ 𝑁| > 𝑑, by property (ii) of conforming maps, there exists 𝐸 ∈ 2𝑋, |𝐸| ≤ 𝑑 s.t.
𝜓(𝐸) = 𝐹 .

Denote 𝐸′ = 𝐸 ∩ 𝑁 ∈ ℰ, by property (𝑖) of 𝜓:

𝜓(𝐸′) ∩ 𝑁 = 𝜓(𝐸 ∩ 𝑁) ∩ 𝑁 = 𝜓(𝐸) ∩ 𝑁 = 𝐹 ∩ 𝑁.

In both cases, there exists 𝐸 ∈ ℰ such that 𝐹 ∩ 𝑁 = 𝜓(𝐸) ∩ 𝑁 . Therefore by definition of 𝜀-
nets, |Δ(𝐹 , 𝜓(𝐸))| ≤ 𝛿

2 . Otherwise, 𝑁 would contain a point from Δ(𝐹, 𝜓(𝐸)) and we would
have 𝐹 ∩ 𝑁 ≠ 𝜓(𝐸) ∩ 𝑁 . That is for all 𝐹 ∈ ℱ, ∃𝐸 ∈ ℰ s.t. |Δ(𝐹 , 𝜓(𝐸))| ≤ 𝛿

2 i.e. 𝒞 is a 𝛿
2

-covering of size 𝑂(|𝑁|𝑑) = 𝑂((𝑛𝑑
𝛿)𝑑 log𝑑(𝑛𝑑

𝛿)).

Runtime analysis. Since 𝑁 is a 𝛿
2𝑛-net for (𝑋, Δ(ℱ)), by Lemma 3.8 and Corollary 3.6, 𝑁

can be obtained by uniformly sampling 𝑂((𝑛𝑑
𝛿) log(𝑛𝑑

𝛿)) points from 𝑋. ℰ is composed of all
sets of size at most 𝑑 of the power set of 𝑁 , that is:

|ℰ| = ∑
𝑑

𝑖=0
(

𝑛𝑑
𝛿 log(𝑛𝑑

𝛿)
𝑖

) = 𝑂((𝑛𝑑
𝛿

)
𝑑

log𝑑(𝑛𝑑
𝛿

)).

thus the first loop has time complexity

𝑂(𝑇𝑑(𝑛𝑑
𝛿

)
𝑑

log𝑑(𝑛𝑑
𝛿

)).

Similarly to Algorithm 14, the second loop has time complexity 𝑂(|𝒞‖𝒫‖𝐴|) = 𝑂(|ℰ‖𝒫‖𝐴|)

= 𝑂((𝑛
𝛿
)

2𝑑+2
log𝑑(𝑛

𝛿
)).

We get a total runtime for Algorithm 17 of

𝑂(𝑇𝑑(𝑛𝑑
𝛿

)
𝑑

log𝑑(𝑛𝑑
𝛿

) + (𝑛𝑑
𝛿

)
2𝑑+2

log𝑑(𝑛𝑑
𝛿

)).

□

This algorithm has, for instance, a better time complexity than Algorithm 14 for set systems
defined by balls in ℝ𝑑. Smallest enclosing disk of 𝑑 points in dimension 𝑑 can be computed in
expected time complexity 𝑂(𝑑𝑑+2) [Wel91]. Therefore, we have 𝑇𝑑 = 𝑂(𝑑𝑑+2 + 𝑛𝑑3) for set
systems spanned by balls in ℝ𝑑. This means that for 𝛿 large and fixed 𝑑, the time complexity
of Algorithm 17 is better than the time complexity of Algorithm 14.

6.3.2 Projection uniformity
In this section we will show an improvement to Algorithm 14 that can be obtained for set
systems that have a uniform distribution of the pairwise symmetric difference between its
ranges. This proof relies on a new concept that we call Projection Uniformity and define below.

93

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

Definition 6.11. Let (𝑋, ℱ) be a set system and 𝛿 ≤ 𝑛. We call the projection uniformity
of radius 𝛿 of (𝑋, ℱ)

PU𝛿 = min
𝐹∈ℱ

|{𝐺 ∈ ℱ, s.t. |Δ(𝐹 , 𝐺)| ≤ 𝛿}|.

Projection uniformity of radius 𝛿 is the cardinality of the smallest ball of radius 𝛿 centered at
each range of (𝑋, ℱ) w.r.t. the symmetric difference metric.

The algorithm we present selects candidate ranges for our near-minimal covering simply by
randomly sampling ranges of ℱ. This idea leads to Algorithm 18, detailed below. We will
analyze the number of draw required to obtain a 𝛿-covering depending on the projection
uniformity of radius 𝛿.

Algorithm 18: (𝛿, 𝛿
4)-covering algorithm using projection uniformity

Input: (𝑋, ℱ), 𝛿
1 𝒞 ← uniform random sample of ℱ of size 𝑚 ln(2𝑚)

PU𝛿
2

2 𝐴 ← 𝛿
8𝑛-approximation of (𝑋, ℱ)

3 for 𝐶 ∈ 𝒞 do
4 if ∀𝑅 ∈ ℛ, |Δ(𝐶, 𝑅) ∩ 𝐴| ≥ 3𝛿

8|𝐴| then
5 ℛ ← ℛ ∪ {𝐶}
6 return ℛ

We will prove the following theorem.

Theorem 6.12. Given (𝑋, ℱ) of VC-dimension 𝑑 and 𝛿 ≤ 𝑛. Algorithm 18 returns a (𝛿, 𝛿
4)

-covering with probability at least 12 in time 𝑂(𝑚
PU𝛿

2

(𝑛
𝛿)𝑑+2 ln(𝑚)).

Overview of the proof. For a fixed 𝛿, we can consider the collection containing all ranges
covering any range 𝐹 ∈ ℱ:

{𝐺 ∈ ℱ, s.t. |Δ(𝐹 , 𝐺)| ≤ 𝛿}.

A collection of ranges containing at least one range from all such collections of a set system is
a 𝛿-covering of the set system as it covers all ranges by definition. We then bound the number
of ranges to draw uniformly at random to obtain at least one range from each such collections
of the set system.

Proof of Theorem 6.12. The random sampling process simply replaces the covering construction
step of [MWW93] in Algorithm 14 and we again only show that 𝒞 is a 𝛿

2-covering of (𝑋, ℱ)
as the rest of the proof follows the exact same steps as the proof of Theorem 6.3.

For all 𝐹 ∈ ℱ, we denote ℬ𝛿
2
(𝐹) = {𝐺 ∈ ℱ, s.t. |Δ(𝐹 , 𝐺)| ≤ 𝛿

2}. By definition

∀𝐹 ∈ ℱ, |ℬ𝛿
2
(𝐹)| ≥ PU𝛿

2
.

94

6 Near-Minimal 𝛿-Coverings of Finite VC-dimension Set Systems and Applications

For all ranges 𝐹 ∈ ℱ, the probability for a range 𝐺 picked uniformly at random in ℱ to be in
ℬ𝛿

2
(𝐹) is

|ℬ𝛿
2
(𝐹)|
𝑚

≥
PU𝛿

2

𝑚
.

Let 𝐹 ∈ ℱ, the probability that, after 𝑚 ln(2𝑚)
PU𝛿

2

 draws, 𝒞 contains at least a range in ℬ𝛿
2
(𝐹) is

(1 −
|ℬ𝛿

2
(𝐹)|
𝑚

)

𝑚 ln(2𝑚)
PU𝛿

2 ≤ (1 −
PU𝛿

2

𝑚
)

𝑚 ln(2𝑚)
PU𝛿

2 ≤ 𝑒− ln(2𝑚) = 1
2𝑚

.

By using a union bound over all ranges 𝐹 ∈ ℱ, we obtain that 𝒞 contains at least a range
from each of the ℬ𝛿

2
(𝐹) with probability at least 1

2 . That is, 𝒞 is a 𝛿
2-covering of (𝑋, ℱ) of

size 𝑚 ln(2𝑚)
PU𝛿

2

 with probability at least 12 .

As for Algorithm 17, the conclusion follows the exact same steps as the proof of Theorem 6.3.

Time complexity analysis. The loop of the algorithm has time complexity 𝑂(|𝒞‖𝒫‖𝐴|) =

𝑂(𝑚
PU𝛿

2

ln(𝑚)(𝑛
𝛿
)

𝑑+2
).

□

Remark 6.13. In the worst case, PU𝛿 = 1, that is, Algorithm 18 has time complexity
𝑂(𝑚(𝑛

𝛿)𝑑+2 ln(𝑚)). The time complexity of Algorithm 18 is smaller than the time
complexity of Algorithm 14 when

PU𝛿
2

= Ω(max(𝑛𝑑+1 ln(𝑚)
𝛿𝑑+1 log(𝑛

𝛿)
, 𝑚𝛿𝑑 ln(𝑚)
𝑛𝑑 log𝑑(𝑛

𝛿)
,)).

Projection uniformity has never received a systematic study. However a result of Chazelle and
Welzl [CW89] showed that for a set system spanned by halfspaces in ℝ𝑑,

PU𝛿
2

≥
(

𝛿
2
𝑑)

𝑑!
≥ 𝛿𝑑

𝑑!(2𝑑)𝑑 .

This result implies that for set systems spanned by halfspaces, Algorithm 18 has time
complexity

𝑂(𝑚 ln(𝑚)𝑛𝑑

𝛿2𝑑+2)

which is smaller than the time complexity of Algorithm 14 for 𝛿 = Ω(𝑛 𝑑+1
2𝑑+1).

95

Chapter 7

Perspectives
In this chapter, we present some open problems that might be of interest to the reader.

LMB Game.

An interesting first problem would be to close the gap between the discrepancy obtained
with the strategy that we present for Alice, 𝑂(𝑛1

2− 1
2𝑑 log5

2 (𝑚𝑛)), and the optimal bound
𝑂(𝑛1

2− 1
2𝑑). The goal would be to obtain it without computing the symmetric difference

between ranges given by Bob. This would probably require new ideas to compute low-
discrepancy colorings for finite VC-dimension set systems that do not rely on the computation
of small 𝛿-coverings. In fact, the chaining approach does not work straightforwardly as this
technique require a fine knowledge of the symmetric difference between the ranges of the set
system.

Small 𝛿-coverings.

An important problem for small 𝛿-coverings would be to be able to construct 𝛿-coverings of
finite VC-dimension set systems of size 𝑂̃((𝑛

𝛿)𝑑) in time with sublinear dependence in 𝑚.
This would open the possibility to have near-minimal algorithms to compute 𝛿-coverings in
time sublinear in 𝑚 as the pruning part of the algorithm we present is already independent
of 𝑚 when pruning coverings of this size.

A second line of improvement for the algorithms we present is to improve the pruning process
of the algorithms. The pruning process we present is relatively simple and could maybe be
improved by avoiding to compute the symmetric difference between every pair of range from
the pruned covering.

Finally, performing a thorough study of projection uniformity of various types of set systems
in particular geometric ones could be of interest. This could lead to complexity improvements
of the current 𝛿-coverings algorithms by constructing 𝛿-coverings using sampling.

Low-discrepancy coloring algorithms.

Low-discrepancy coloring algorithms is the most widely studied problem discussed in this
thesis. However, no general algorithm with time complexity below matrix inversion time
complexity is known. It would be an important improvement on current algorithms to achieve
such complexity. This could open the way to near-quadratic or even linear time discrepancy
algorithms.

Low-crossing partitions.

A first major open problem regarding low-crossing partitions is to find an algorithm that
computes with guarantees low-crossing partitions without relying on cuttings.

Low-crossing matchings can be computed efficiently without cuttings [CM21] and are low-
crossing partitions of size n/2. It would be interesting to see whether the ideas that apply

96

7 Perspectives

to low-crossing matchings can be applied more generally to partitions of any size. Another
interesting idea to explore regarding the link between low-crossing matchings and low-
crossing partitions is whether it is possible to efficiently obtain low-crossing partitions given
a low-crossing matching.

Finally, improving the state of current cutting algorithms either by extending them to other
types geometric set systems and to higher dimensions would improve low-crossing partitions
algorithms instantly.

97

Bibliography
[ACL01] Aiello, William ; Chung, Fan ; Lu, Linyuan: A Random Graph Model for Power

Law Graphs. In: Experimental Mathematics vol. 10 (2001)

[AHK12] Arora, Sanjeev ; Hazan, Elad ; Kale, Satyen: The Multiplicative Weights Update
Method: a Meta-Algorithm and Applications. In: Theory of Computing vol. 8,
Theory of Computing (2012)

[AHW87] Alon, Noga ; Haussler, David ; Welzl, Emo: Partitioning and geometric embedding
of range spaces of finite Vapnik-Chervonenkis dimension. In: Proceedings of the
third annual symposium on Computational geometry, 1987

[Ale90] Alexander, Ralph: Geometric methods in the study of irregularities of distribu-
tion. In: Combinatorica vol. 10 (1990)

[Alo+05] Alon, Noga ; Krivelevich, Michael ; Spencer, Joel ; Szabó, Tibor: Discrepancy
games. In: the electronic journal of combinatorics vol. 12 (2005)

[AMS13] Agarwal, Pankaj K. ; Matoušek, Jiří ; Sharir, Micha: On Range Searching with
Semialgebraic Sets. II. In: SIAM Journal on Computing vol. 42 (2013)

[Ban+19] Bansal, Nikhil ; Dadush, Daniel ; Garg, Shashwat ; Lovett, Shachar: The Gram–
Schmidt Walk: A Cure for the Banaszczyk Blues. In: Theory of Computing vol.
15 (2019)

[Ban10] Bansal, Nikhil: Constructive algorithms for discrepancy minimization. In: 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, 2010, pp. 3–10

[BC86] Beck, Józef ; Chen, William W.L.: Note on irregularities of distribution. In: Math-
ematika vol. 33, London Mathematical Society (1986)

[BDG19] Bansal, Nikhil ; Dadush, Daniel ; Garg, Shashwat: An Algorithm for Komlós
Conjecture Matching Banaszczyk's Bound . In: SIAM Journal on Computing vol.
48 (2019)

[Bec81] Beck, József: Roth’s estimate of the discrepancy of integer sequences is nearly
sharp. In: Combinatorica vol. 1 (1981)

[BLM13] Boucheron, Stéphane ; Lugosi, Gábor ; Massart, Pascal: Concentration inequalities:
A nonasymptotic theory of independence : Oxford university press, 2013

[BM20] Bansal, Nikhil ; Meka, Raghu: On the discrepancy of random low degree set
systems. In: Random Structures & Algorithms vol. 57 (2020)

[Cha+12] Chan, Timothy M ; Grant, Elyot ; Könemann, Jochen ; Sharpe, Malcolm: Weighted
capacitated, priority, and geometric set cover via improved quasi-uniform
sampling. In: Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, 2012, pp. 1576–1585

[Cha00] Chazelle, Bernard: The Discrepancy Method: Randomness and Complexity : Cam-
bridge University Press, 2000 — ISBN 0-521-77093-9

98

Bibliography

[Cha12] Chan, Timothy M.: Optimal Partition Trees. In: Discrete & Computational Geom-
etry vol. 47 (2012)

[Cha93] Chazelle, Bernard: Cutting hyperplanes for divide-and-conquer. In: Discrete &
Computational Geometry vol. 9 (1993)

[CM21] Csikos, Monika ; Mustafa, Nabil H.: Escaping the Curse of Spatial Partitioning:
Matchings with Low Crossing Numbers and Their Applications. In: 37th Interna-
tional Symposium on Computational Geometry (SoCG 2021). vol. 189, 2021

[CM22] Csikós, Mónika ; Mustafa, Nabil H.: Optimal approximations made easy. In:
Information Processing Letters vol. 176 (2022)

[CM96] Chazelle, Bernard ; Matoušek, Jiří: On Linear-Time Deterministic Algorithms
for Optimization Problems in Fixed Dimension. In: Journal of Algorithms vol.
21 (1996)

[CNN11] Charikar, Moses ; Newman, Alantha ; Nikolov, Aleksandar: Tight hardness
results for minimizing discrepancy. In: Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, 2011

[Cou+24] Coudert, David ; Csikós, Mónika ; Ducoffe, Guillaume ; Viennot, Laurent:
Practical Computation of Graph VC-Dimension. In: Symposium on Experimental
Algorithms (SEA), 2024

[CS13] Conway, John Horton ; Sloane, Neil James Alexander: Sphere packings, lattices
and groups. vol. 290 : Springer Science & Business Media, 2013

[CW89] Chazelle, Bernard ; Welzl, Emo: Quasi-optimal range searching in spaces of finite
VC-dimension. In: Discrete & Computational Geometry vol. 4 (1989)

[DGL13] Devroye, Luc ; Györfi, László ; Lugosi, Gábor: A probabilistic theory of pattern
recognition : Springer Science & Business Media, 2013

[DSW22] Deng, Yichuan ; Song, Zhao ; Weinstein, Omri: Discrepancy Minimization in
Input-Sparsity Time, arXiv (2022)

[Dud78] Dudley, Richard M: Central limit theorems for empirical measures. In: The Annals
of Probability (1978)

[Ezr16] Ezra, Esther: A size-sensitive discrepancy bound for set systems of bounded
primal shatter dimension. In: SIAM Journal on Computing vol. 45 (2016)

[Fra12] Fraenkel, Aviezri: Combinatorial games: selected bibliography with a succinct
gourmet introduction. In: The Electronic Journal of Combinatorics (2012)

[Gre23] Green Larsen, Kasper: Fast discrepancy minimization with hereditary guaran-
tees. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2023

[Har00] Har-Peled, Sariel: Constructing Planar Cuttings in Theory and Practice. In: SIAM
J. Comput. vol. 29 (2000)

99

Bibliography

[Hau95] Haussler, David: Sphere packing numbers for subsets of the Boolean n-cube with
bounded Vapnik-Chervonenkis dimension. In: Journal of Combinatorial Theory,
Series A vol. 69 (1995)

[HSS14] Harvey, Nicholas JA ; Schwartz, Roy ; Singh, Mohit: Discrepancy without partial
colorings. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2014), 2014

[HW87] Haussler, David ; Welzl, Emo: 𝜀-nets and simplex range queries. In: Discrete &
Computational Geometry vol. 2 (1987)

[JSS23] Jain, Vishesh ; Sah, Ashwin ; Sawhney, Mehtaab: Spencer's theorem in nearly
input-sparsity time. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2023

[KY14] Koufogiannakis, Christos ; Young, Neal E: A nearly linear-time PTAS for explicit
fractional packing and covering linear programs. In: Algorithmica vol. 70 (2014)

[LK14] Leskovec, Jure ; Krevl, Andrej: SNAP Datasets: Stanford Large Network Dataset
Collection. In: http://snap.stanford.edu/data (2014)

[LKF07] Leskovec, Jure ; Kleinberg, Jon ; Faloutsos, Christos: Graph evolution: Densifica-
tion and shrinking diameters. In: ACM transactions on Knowledge Discovery from
Data (TKDD) vol. 1 (2007)

[LLS01] Li, Yi ; Long, Philip M. ; Srinivasan, Aravind: Improved Bounds on the Sample
Complexity of Learning. In: Journal of Computer and System Sciences vol. 62
(2001)

[LM15] Lovett, Shachar ; Meka, Raghu: Constructive Discrepancy Minimization by
Walking on the Edges. In: SIAM Journal on Computing vol. 44 (2015)

[LRR17] Levy, Avi ; Ramadas, Harishchandra ; Rothvoss, Thomas: Deterministic Discrep-
ancy Minimization via the Multiplicative Weight Update Method. In: Integer
Programming and Combinatorial Optimization, 2017

[Mat13] Matoušek, Jiří: Lectures on discrete geometry : Springer Science & Business Media,
2013

[Mat18] Matheny, Michael: pypartition. In: https://github.com/michaelmathen/pypartition,
GitHub (2018)

[Mat92] Matoušek, Jiří: Efficient partition trees. In: Discrete & Computational Geometry
vol. 8 (1992)

[Mat93] Matoušek, Jiří: Range searching with efficient hierarchical cuttings. In: Discrete
& Computational Geometry vol. 10 (1993)

[Mat95] Matoušek, Jiří: Tight upper bounds for the discrepancy of half-spaces. In: Discrete
& Computational Geometry vol. 13 (1995)

[Mat99] Matoušek, Jiří: Geometric discrepancy: An illustrated guide. vol. 18 : Springer
Science & Business Media, 1999

100

Bibliography

[ML12] McAuley, Julian ; Leskovec, Jure: Learning to discover social circles in ego net-
works. In: Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS'12, 2012

[MP18] Matheny, Michael ; Phillips, Jeff M: Practical Low-Dimensional Halfspace Range
Space Sampling. In: 26th Annual European Symposium on Algorithms (ESA), 2018

[MP19] Matheny, Michael ; Phillips, Jeff M: Computing Approximate Statistical Discrep-
ancy. In: 29th International Symposium on Algorithms and Computation, 2019

[MU17] Mitzenmacher, Michael ; Upfal, Eli: Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis : Cambridge univer-
sity press, 2017

[Mus16] Mustafa, Nabil H: A simple proof of the shallow packing lemma. In: Discrete &
Computational Geometry vol. 55 (2016)

[Mus22] Mustafa, Nabil H: Sampling in combinatorial and geometric set systems. vol. 265 :
American Mathematical Society, 2022

[MWW93] Matousek, Jiri ; Welzl, Emo ; Wernisch, Lorenz: Discrepancy and 𝜀-approxima-
tions for bounded VC-dimension. In: Combinatorica vol. 13 (1993)

[PT13] Pach, János ; Tardos, Gábor: Tight lower bounds for the size of epsilon-nets. In:
Journal of the American Mathematical Society vol. 26 (2013)

[PW90] Pach, János ; Woeginger, Gerhard: Some new bounds for epsilon-nets. In: Proceed-
ings of the sixth annual symposium on Computational geometry, 1990, pp. 10–15

[Rad21] Radon, Johann: Mengen konvexer Körper, die einen gemeinsamen Punkt enthal-
ten. In: Mathematische Annalen vol. 83 (1921)

[RT87] Raghavan, Prabhakar ; Tompson, Clark D: Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. In: Combinatorica vol. 7,
Springer (1987)

[Sau72] Sauer, Noel: On the density of families of sets. In: Journal of Combinatorial Theory,
Series A vol. 13 (1972)

[She72] Shelah, Saharon: A combinatorial problem; stability and order for models and
theories in infinitary languages. In: Pacific Journal of Mathematics vol. 41 (1972)

[Spe85] Spencer, Joel: Six standard deviations suffice. In: Transactions of the American
Mathematical Society vol. 289 (1985)

[STZ06] Suri, Subhash ; Toth, Csaba D ; Zhou, Yunhong: Range Counting over Multidi-
mensional Data Streams. In: Discrete & Computational Geometry vol. 36 (2006)

[Tal94] Talagrand, Michel: Sharper Bounds for Gaussian and Empirical Processes. In: The
Annals of Probability vol. 22 (1994)

[VC71] Vapnik, Vladimir ; Chervonenkis, Alexey: On the Uniform Convergence of Rel-
ative Frequencies of Events to Their Probabilities. In: Theory of Probability and
its Applications vol. 16 (1971)

101

Bibliography

[Via17] Viazovska, Maryna S: The sphere packing problem in dimension 8. In: Annals of
mathematics (2017)

[Wel91] Welzl, Emo: Smallest enclosing disks (balls and ellipsoids). In: New Results and
New Trends in Computer Science, 1991

[You95] Young, Neal E: Randomized rounding without solving the linear program. In:
Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms,
1995

102

	Context and contributions
	Preliminaries
	Combinatorial discrepancy games ()
	Low-crossing partitions ()
	δ-coverings and δ-packings ()

	Contexte et contributions
	Connaissances préliminaires
	Jeux de discrépance combinatoire (Chapitre 4)
	Partitions à faibles croisements (Chapitre 5)
	δ-recouvrement et δ-paquet (Chapitre 6)

	Previous work
	VC-dimension
	VC-dimension of some common set systems

	Approximations of set systems
	ε-nets
	ε-approximations

	Packings in finite VC-dimension
	A small digression.
	Haussler's packing lemma.
	δ-coverings and δ-packings
	Greedy construction of maximal δ-packings and minimal δ-coverings.
	Fast constructions of δ-coverings.
	Fast δ-coverings for set systems spanned by halfspaces using cuttings.
	Weak ε-coverings.

	Combinatorial discrepancy
	Low-discrepancy colorings for general set systems
	The Lovett-Meka discrepancy algorithm.
	Other related works on low-discrepancy colorings algorithms.

	Low-discrepancy coloring colorings of finite VC-dimension set systems
	Combinatorial games about discrepancy

	Simplicial partitions
	Computing ε-approximation with sub quadratic size in finite VC-dimension
	Simplicial partitions
	Low-discrepancy colorings

	A New Discrepancy Game
	LMB Game
	Low discrepancy coloring guided by the Lovett-Meka algorithm
	An almost optimal stochastic strategy for Alice
	MWU Algorithm
	Improvements of the MWU Algorithm using sampling

	A greedy algorithm for low-crossing partitions for general set systems
	The Ordering Theorem
	Our Greedy Algorithm Using the Potential Function
	Variants
	Experiments
	Implementations
	Algorithm Parameters
	Experiments on the number of samples to approximate the weights in Part At Once
	Number of potential function violations

	Performance evaluation
	Grid set system
	Abstract set systems induced by neighborhoods in graphs
	Finite projective planes
	ε-Approximations

	Near-Minimal δ-Coverings of Finite VC-dimension Set Systems and Applications
	A near-minimal covering algorithm for finite VC-dimension set systems
	Motivation of our approach
	Our Algorithm

	Applications of our δ-covering algorithm
	Application to low-discrepancy colorings computation
	Obtaining a polylog approximation of the optimal discrepancy for finite VC-dimension set systems
	Obtaining optimal discrepancy for finite VC-dimension set systems using chaining

	Verifying a random ε-approximation

	Variations of our δ-covering algorithm for specific types of set systems
	Geometric set systems with a conforming map
	Projection uniformity

	Perspectives
	Bibliography

