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A partition of points in the unit cube and random halfspaces
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Previous work

o [Mat92] showed the existence of partitions with crossing
number O(tl_l/d) for set systems spanned by halfspaces in
RY using cuttings.

@ [Cha93, HPO0O] provided implementations of cuttings
algorithms.

o [MP18] extended these to provide an implementation of
partitions.

There are neither fast algorithms in practice in dimension > 3
to compute small crossing number partitions for geometric set
systems nor for abstract set systems in any dimension.
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An algorithm that picks elements following this potential function builds
partitions with crossing number O(t'~*/9 In(t)).
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A greedy algorithm

We reuse the Multiplicative Weight idea from Matousek:

@ We maintain weights on ranges initially all equal to 1.
@ To build a part P;:
— We select a root r € X\(P; U...U P;_1) at random.
— We compute the cost of elements x € X\(Py U ... U P;_1) that
is the sum of weight of ranges the edge r, x crosses.
— We select an arbitrary element that keeps the cost of part (sum
of costs of elements of the part) below the potential function.

@ We double the weight of ranges crossing the part built.



Experiments
000000

Experiments




Experiments
[e] lele]ele]e}

Experimental Setup

@ We propose two variations of the greedy algorithms:

— MINWEIGHT: We pick the element minimizing cost at each
iteration.

— PARTATONCE: We estimate weights with range sampling and
pick the n/t elements with lowest estimated weight as a part.

@ Experiments results are obtained from average over 10 runs.

@ Experiments have been performed on AMD Ryzen 7 5800X
(16 cores) @ 4.85 GHz (Home computer).
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Comparison with previous methods (n)

—— MinWeight
—— PartAtOnce
s —— MP-Matousek

—— MinWeight

—— PartAtOnce
—— MP-Matousek
2.1281-12

crossing number
runtime

Comparison of crossing number and runtime of our algorithms for varying
nand t =128,d = 2.
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Comparison with previous methods (t)

—— MinWeight —— MinWeight
] — PartAtOnce #1 —— PartAtOnce
—— MP-Matousek —— MP-Matousek

crossing numper
3 & 8 8 H
\\\ N
|
runtime

t

Comparison of crossing number and runtime of our algorithms for varying
t and n = 32768, d = 2.
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Real world datasets: ArXiv co-authorship graph

Input | t4/5 | MINWEIGHT PARTATONCE
t kr runtime (s) | kx runtime (s)

50 23 | 12 0.973 21 0.182
100 | 40 | 16 1.08 28 0.256
200 | 69 | 19 1.17 34 0.373
500 | 144 | 26 1.46 41 0.74

VC-dimension: 5 [CCDV24]
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Summary:

@ We prove the existence of a potential function to build
low-crossing partitions iteratively.

@ We build the first practically fast algorithm to compute
low-crossings partitions of abstract set systems.

@ It has performances matching the performances of previous
algorithm on set systems we could compare them.

The code is available online
https://github.com/alex-louvet/partitions

Thank Youl
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€ — approximation

Given (X, F), an e-approximation is a set A such that:
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[Tal94, LLSO1] proved that for set systems with VC-dimension
< d, a uniform random sample of X of size O (g%) is an e-
approximation.

[STZ06] proved that it is possible to construct an e-

approximation of size O < = > using low-crossing partitions
ed+1

for set systems with VC-dim < d.
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g-approximation experiments

random sample
[Talo4]

A= &
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