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Preliminaries

Let a set system be a ground set X and a collection of ranges
(subsets) F . We denote |X | = n, |F| = m.

The VC-dimension of a set system is a measure of its complexity.

Set systems spanned by halfspaces in Rd has VC-dimension d + 1.
⇒ F ∈ F iff ∃H s.t. F = X ∩H
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Low-crossing Partitions

Given (X ,F) and a parameter t ∈ [2..n2 ], find a partition of X in t
parts P1, ..,Pt of size O

(
n
t

)
to minimize the crossing number :

max
F∈F

|{P ∈ {P1, ...Pt} s.t. P crosses F}|
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Given (X ,F) and a parameter t ∈ [2..n2 ], find a partition of X in t
parts P1, ..,Pt of size O

(
n
t

)
to minimize the crossing number :

max
F∈F

|{P ∈ {P1, ...Pt} s.t. P crosses F}|

A partition of points in the unit cube and random halfspaces
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Previous work

[Mat92] showed the existence of partitions with crossing
number O(t1−1/d) for set systems spanned by halfspaces in
Rd using cuttings.

[Cha93, HP00] provided implementations of cuttings
algorithms.

[MP18] extended these to provide an implementation of
partitions.

There are neither fast algorithms in practice in dimension > 3
to compute small crossing number partitions for geometric set
systems nor for abstract set systems in any dimension.
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A greedy approach

An Ordering Lemma (simplified)

Let (X ,F) be a set system such that ∀Y ⊆ X and s ≤ |Y |, (Y ,F|Y )
admits a partition of size s with crossing number s1−1/d .

For any fixed t ∈ [2, n/2],P = {P1, . . . ,Pt} be t disjoint subsets of X ,
where |Pi | = n/t for all i ∈ [t].

Let Pl ∈ P be selected uniformly at random.

Then there exists an ordering of the elements of Pl , say ⟨x1, x2, . . . , xn/t⟩,
such that w.h.p.,

∀k ≤ n

t
, the prefix set {x1, . . . , xk} is crossed by at most

4mk1/d

n1/d
sets.

An algorithm that picks elements following this potential function builds
partitions with crossing number O(t1−1/d ln(t)).
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A greedy algorithm

We reuse the Multiplicative Weight idea from Matousek:

We maintain weights on ranges initially all equal to 1.

To build a part Pi :

→ We select a root r ∈ X\(P1 ∪ ... ∪ Pi−1) at random.
→ We compute the cost of elements x ∈ X\(P1 ∪ ... ∪ Pi−1) that

is the sum of weight of ranges the edge r , x crosses.
→ We select an arbitrary element that keeps the cost of part (sum

of costs of elements of the part) below the potential function.

We double the weight of ranges crossing the part built.
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Experiments
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Experimental Setup

We propose two variations of the greedy algorithms:

→ MinWeight: We pick the element minimizing cost at each
iteration.

→ PartAtOnce: We estimate weights with range sampling and
pick the n/t elements with lowest estimated weight as a part.

Experiments results are obtained from average over 10 runs.

Experiments have been performed on AMD Ryzen 7 5800X
(16 cores) @ 4.85 GHz (Home computer).
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Experiments

n = 8192, t = 32, crossing number : 10
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Comparison with previous methods (n)

Comparison of crossing number and runtime of our algorithms for varying
n and t = 128, d = 2.
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Comparison with previous methods (t)

Comparison of crossing number and runtime of our algorithms for varying
t and n = 32768, d = 2.
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Real world datasets: ArXiv co-authorship graph

Input t4/5 MinWeight PartAtOnce
t κF runtime (s) κF runtime (s)

50 23 12 0.973 21 0.182
100 40 16 1.08 28 0.256
200 69 19 1.17 34 0.373
500 144 26 1.46 41 0.74

VC-dimension: 5 [CCDV24]



Low-crossing partitions Experiments More results: ε-approximations References

Real world datasets: ArXiv co-authorship graph

Input t4/5 MinWeight PartAtOnce
t κF runtime (s) κF runtime (s)

50 23 12 0.973 21 0.182
100 40 16 1.08 28 0.256
200 69 19 1.17 34 0.373
500 144 26 1.46 41 0.74

VC-dimension: 5 [CCDV24]



Low-crossing partitions Experiments More results: ε-approximations References

Summary:

We prove the existence of a potential function to build
low-crossing partitions iteratively.

We build the first practically fast algorithm to compute
low-crossings partitions of abstract set systems.

It has performances matching the performances of previous
algorithm on set systems we could compare them.

The code is available online
https://github.com/alex-louvet/partitions

Thank You!

https://github.com/alex-louvet/partitions
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More results: ε-approximations
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ε− approximation

Given (X ,F), an ε-approximation is a set A such that:

∀F ∈ F ,

∣∣∣∣ |F ||X |
− |F ∩ A|

|A|

∣∣∣∣ ≤ ε

[Tal94, LLS01] proved that for set systems with VC-dimension
≤ d , a uniform random sample of X of size O

(
d
ε2

)
is an ε-

approximation.

[STZ06] proved that it is possible to construct an ε-

approximation of size O

(
d

ε
2d
d+1

)
using low-crossing partitions

for set systems with VC-dim ≤ d .
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ε-approximation experiments

our algorithm

random sample
[Tal94]

|A| = n
4 |A| = n

16 |A| = n
64
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