Faster Algorithms for Approximating Combinatorial and Geometric Data

Alexandre Louvet

2025-07-16

Université Sorbonne Paris Nord

 $X \longleftarrow$ ground set

 $X \leftarrow \text{ground set}$

 $X \leftarrow \text{ground set}$

 $\hookrightarrow n \coloneqq |X|$

 $X \longleftarrow$ ground set

 $\, \hookrightarrow n \coloneqq |X|$

$\mathcal{F} \longleftarrow \text{collection of subsets of } X$

 $X \longleftarrow \text{ground set}$

 $\, \hookrightarrow n \coloneqq |X|$

 $X \longleftarrow \text{ground set}$

 $\hookrightarrow n \coloneqq |X|$

 $\mathcal{F} \longleftarrow \text{collection of subsets of } X$

 $\hookrightarrow m \coloneqq |\mathcal{F}|$

$$(X,\mathcal{F})$$
 set system, $n\coloneqq |X|,m\coloneqq |\mathcal{F}|$

 \Rightarrow combinatorially $m \leq 2^n$

VC-dimension

VC-dimension

VC-dimension

(X,\mathcal{F}) set system, $n\coloneqq |X|,m\coloneqq |\mathcal{F}|$

VC-dimension: $\sup_{d \in [1,n]} \exists Y \subseteq X, |Y| = d \text{ s.t. } |\{F \cap Y : F \in \mathcal{F}\}| = 2^d$

2-coloring: $\chi: X \to \{-1, +1\}$

2-coloring: $\chi: X \to \{-1, +1\}$

discrepancy w.r.t.
$$\chi$$
: disc $_{\chi}(X, \mathcal{F}) = \max_{F \in \mathcal{F}} \underbrace{\left| \sum_{x \in F} \chi(x) \right|}_{|\chi(F)|}$

2-coloring: $\chi: X \to \{-1, +1\}$

discrepancy w.r.t.
$$\chi$$
: disc $_{\chi}(X, \mathcal{F}) = \max_{F \in \mathcal{F}} \underbrace{\left| \sum_{x \in F} \chi(x) \right|}_{|\chi(F)|}$ (--+)

2-coloring: $\chi: X \to \{-1, 1\}$

discrepancy w.r.t.
$$\chi$$
: disc $_{\chi}(X, \mathcal{F}) = \max_{F \in \mathcal{F}} \left| \sum_{x \in F} \chi(x) \right|$

discrepancy of
$$(X, \mathcal{F})$$
: $\min_{\chi: X \to \{-1,1\}} \operatorname{disc}_{\chi}(X, \mathcal{F})$

2-coloring:
$$\chi : X \to \{-1, 1\}$$

discrepancy w.r.t.
$$\chi$$
: disc $_{\chi}(X, \mathcal{F}) = \max_{F \in \mathcal{F}} \left| \sum_{x \in F} \chi(x) \right|$

discrepancy of
$$(X, \mathcal{F})$$
: $\min_{\chi: X \to \{-1,1\}} \operatorname{disc}_{\chi}(X, \mathcal{F})$

Goal: Compute a small discrepancy coloring

e-approximations: $A \subseteq X$ s.t. $\forall F \in \mathcal{F}, \left| \frac{|F|}{n} - \frac{|F \cap A|}{|A|} \right| \le \varepsilon$ × × × ×

e-approximations: $A \subseteq X$ s.t. $\forall F \in \mathcal{F}, \left| \frac{|F|}{n} - \frac{|F \cap A|}{|A|} \right| \le \varepsilon$

e-approximations: $A \subseteq X$ s.t. $\forall F \in \mathcal{F}, \left| \frac{|F|}{n} - \frac{|F \cap A|}{|A|} \right| \le \varepsilon$

Discrepancy of a random coloring: $O(\sqrt{n \ln(m)})$ (folklore)

Discrepancy of a random coloring: $O(\sqrt{n \ln(m)})$ (folklore)

Lower bound for general set systems: $\Omega(\sqrt{n})$ Spencer (1985)

Discrepancy of a random coloring: $O(\sqrt{n \ln(m)})$ (folklore)

Lower bound for general set systems: $\Omega(\sqrt{n})$ Spencer (1985)

Lower bound for set systems with VC-dimension $d: \Omega(n^{\frac{1}{2}-\frac{1}{2d}})$ Alexander (1990)
Discrepancy of a random coloring: $O(\sqrt{n \ln(m)})$ (folklore)

Lower bound for general set systems: $\Omega(\sqrt{n})$ Spencer (1985)

Lower bound for set systems with VC-dimension $d: \Omega\left(n^{\frac{1}{2}-\frac{1}{2d}}\right)$ Alexander (1990)

Stochastic algorithm matching Spencer's bound in polynomial time **Bansal (2010) and Lovett, Meka (2015)** Discrepancy of a random coloring: $O(\sqrt{n \ln(m)})$ (folklore)

Lower bound for general set systems: $\Omega(\sqrt{n})$ Spencer (1985)

Lower bound for set systems with VC-dimension $d: \Omega\left(n^{\frac{1}{2}-\frac{1}{2d}}\right)$ Alexander (1990)

Stochastic algorithm matching Spencer's bound in polynomial time **Bansal (2010) and Lovett, Meka (2015)**

Deterministic algorithm matching Spencer's bound in polynomial time Levy, Ramadas, Rothvoss (2017)

Goal of Alice: minimize

$$\sup_{(F_1,\ldots,F_T)\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T |\chi_t(F_t)| \geq \text{offline coloring bound}$$

Goal of Alice: minimize

$$\sup_{(F_1,\ldots,F_T)\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T |\chi_t(F_t)| \geq \text{offline coloring bound}$$

General set system: $\Omega(\sqrt{n})$

Goal of Alice: minimize

$$\sup_{(F_1,\ldots,F_T)\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T |\chi_t(F_t)| \geq \text{offline coloring bound}$$

General set system: $\Omega(\sqrt{n}) \Leftarrow$ Spencer (1985)

Goal of Alice: minimize $(F_1$

$$\sup_{1,...,F_T)\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T |\chi_t(F_t)| \geq \text{offline coloring bound}$$

General set system: $\Omega(\sqrt{n}) \Leftarrow$ **Spencer (1985)**

 \hookrightarrow Achieved with random coloring w.h.p.

Goal of Alice: minimize (F_1)

$$\sup_{1,...,F_T)\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T |\chi_t(F_t)| \geq \text{offline coloring bound}$$

General set system: $\Omega(\sqrt{n}) \Leftarrow$ Spencer (1985)

 \hookrightarrow Achieved with random coloring w.h.p.

Set systems with VC-dimension $d: \Omega\left(n^{\frac{1}{2}-\frac{1}{2d}}\right)$

Goal of Alice: minimize $(F_1$

$$\sup_{(1,...,F_T)\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T |\chi_t(F_t)| \geq \text{offline coloring bound}$$

General set system: $\Omega(\sqrt{n}) \Leftarrow$ **Spencer (1985)**

 \hookrightarrow Achieved with random coloring w.h.p.

Set systems with VC-dimension $d: \Omega\left(n^{\frac{1}{2}-\frac{1}{2d}}\right) \Leftarrow \text{Alexander (1990)}$

Goal of Alice: minimize

$$\sup_{F_1,...,F_T)\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T |\chi_t(F_t)| \geq \text{offline coloring bound}$$

General set system: $\Omega(\sqrt{n}) \Leftarrow$ **Spencer (1985)**

 \hookrightarrow Achieved with random coloring w.h.p.

Set systems with VC-dimension $d: \Omega\left(n^{\frac{1}{2}-\frac{1}{2d}}\right) \Leftarrow \text{Alexander (1990)}$

 \hookrightarrow Random coloring also $\tilde{\Theta}(\sqrt{n})$ for finite VC-dimension set systems

Main result. For T rounds on VC-dimension d set system

Main result. For T rounds on VC-dimension d set system

$$\frac{1}{T} \sum_{t=1}^{T} |\chi_t(F_t)| = \tilde{O}\Big(\max\Big(T^{-\frac{1}{2d}} \sqrt{n} \ , \ n^{\frac{1}{2} - \frac{1}{2d}} \Big) \Big)$$

Main result. For T rounds on VC-dimension d set system

$$\frac{1}{T} \sum_{t=1}^{T} |\chi_t(F_t)| = \tilde{O}\Big(\max\Big(T^{-\frac{1}{2d}} \sqrt{n} \ , \ n^{\frac{1}{2} - \frac{1}{2d}} \Big) \Big)$$

Remark. We can compute $\chi_1, ..., \chi_{\frac{n}{16}}$ s.t.

$$\forall F \in \mathcal{F}, \frac{16}{n} \mathbb{E} \left[\sum_{t=1}^{\frac{n}{16}} |\chi_t(F)| \right] = \tilde{O} \left(n^{\frac{1}{2} - \frac{1}{2d}} \right)$$

where χ_t is computed knowing only $F_1, ..., F_{t-1}$.

Key tools: Multiplicative Weight Update, ε -approximations, Freedman's inequality

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

Theorem (Lovett, Meka (2015)) Given \mathcal{F} with m = O(n), the algorithm computes a random coloring $LM_{\mathcal{F}}$ s.t.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(B) For fixed $\mathcal{A} \subseteq 2^X$, $\forall A \in \mathcal{A}, |\mathrm{LM}_{\mathcal{F}}(A)| \le 8\sqrt{|A|\log^5(|\mathcal{A}|mn)}$ w.h.p.

At iteration $t \leq n$, Alice choses $\chi_t = LM_{\{F_1, \dots, F_{t-1}\}}$

Theorem (Lovett, Meka (2015)) Given \mathcal{F} with m = O(n), the algorithm computes a random coloring $LM_{\mathcal{F}}$ s.t.

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(B) For fixed $\mathcal{A} \subseteq 2^X$, $\forall A \in \mathcal{A}, |\mathrm{LM}_{\mathcal{F}}(A)| \le 8\sqrt{|A|\log^5(|\mathcal{A}|mn)}$ w.h.p.

At iteration
$$t \leq n$$
, Alice choses $\chi_t = LM_{\{F_1,...,F_{t-1}\}}$
 $\Rightarrow \chi_t(F_1) = ... = \chi_t(F_{t-1}) = 0$

Iteration 1 :

 F_1

Iteration 2 :

 F_2

Iteration k :

 F_k

Iteration t :

 F_t F_k F_{k-2} F_{k-1} F_{t-1} $F_{i/2}$ F_{i+1} F_1 F_2 F_{2i+1} $P_{\frac{log(T)}{d}-1}$ $P_{rac{log(T)}{d}}$ P_{i-1} P_{i+1} P_0 P_1 P_i P_{last}

Overview of the proof (bound)

Overview of the proof (bound)

 $\forall F,F'\in P_i, |\Delta(F,F')|\geq \tfrac{n}{2^i}$

Overview of the proof (bound)

$$\forall F, F' \in P_i, |\Delta(F, F')| \ge \frac{n}{2^i} \Rightarrow |P_i| \le 2^{id}$$
 Haussler (1995)

$$\forall F, F' \in P_i, |\Delta(F, F')| \ge \frac{n}{2^i} \Rightarrow |P_i| \le 2^{id}$$
 Haussler (1995)

Iteration k :

 $\begin{aligned} \forall F, F' \in P_i, |\Delta(F, F')| &\geq \frac{n}{2^i} \Rightarrow |P_i| \leq 2^{id} \quad \text{Haussler (1995)} \\ \forall F_k \in P_i, \exists F_{k'} \in P_{i-1} \text{ s.t. } |\Delta(F_k, F_{k'})| \leq \frac{n}{2^{i-1}} \\ \text{Iteration } \mathbf{k} : \end{aligned}$

Discrepancy and symmetric difference

Symmetric difference: $\Delta(F_1, F_2) = (F_1 \cup F_2) \setminus (F_1 \cap F_2)$ **Discrepancy of \Delta:** $|\chi(F_2)| \le |\chi(F_1)| + |\chi(\Delta(F_1, F_2))|$

Discrepancy and symmetric difference

Symmetric difference: $\Delta(F_1, F_2) = (F_1 \cup F_2) \setminus (F_1 \cap F_2)$ **Discrepancy of \Delta:** $|\chi(F_2)| \le |\chi(F_1)| + |\chi(\Delta(F_1, F_2))|$

Discrepancy and symmetric difference

Symmetric difference: $\Delta(F_1, F_2) = (F_1 \cup F_2) \setminus (F_1 \cap F_2)$ **Discrepancy of \Delta:** $|\chi(F_2)| \le |\chi(F_1)| + |\chi(\Delta(F_1, F_2))|$

 $\begin{aligned} \forall F, F' \in P_i, |\Delta(F, F')| &\geq \frac{n}{2^i} \Rightarrow |P_i| \leq 2^{id} \quad \text{Haussler (1995)} \\ \forall F_k \in P_i, \exists F_{k'} \in P_{i-1} \text{ s.t. } |\Delta(F_k, F_{k'})| &\leq \frac{n}{2^{i-1}} \end{aligned}$

 $\forall F, F' \in P_i, |\Delta(F, F')| \ge \frac{n}{2^i} \Rightarrow |P_i| \le 2^{id} \quad \text{Haussler (1995)}$ $\forall F_k \in P_i, \exists F_{k'} \in P_{i-1} \text{ s.t. } |\Delta(F_k, F_{k'})| \le \frac{n}{2^{i-1}}$

 $|\chi_k(F_k)| \le |\chi_k(F_{k'})| + |\chi_k(\Delta(F_k,F_{k'}))|$

 $\begin{aligned} \forall F, F' \in P_i, |\Delta(F, F')| &\geq \frac{n}{2^i} \Rightarrow |P_i| \leq 2^{id} \quad \text{Haussler (1995)} \\ \forall F_k \in P_i, \exists F_{k'} \in P_{i-1} \text{ s.t. } |\Delta(F_k, F_{k'})| &\leq \frac{n}{2^{i-1}} \end{aligned}$

$$|\chi_k(F_k)| \leq |\chi_k(F_{k'})| + |\chi_k(\Delta(F_k,F_{k'}))| = \underbrace{0}_{(\mathcal{A})}$$

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

 $\begin{aligned} \forall F, F' \in P_i, |\Delta(F, F')| &\geq \frac{n}{2^i} \Rightarrow |P_i| \leq 2^{id} \quad \text{Haussler (1995)} \\ \forall F_k \in P_i, \exists F_{k'} \in P_{i-1} \text{ s.t. } |\Delta(F_k, F_{k'})| &\leq \frac{n}{2^{i-1}} \end{aligned}$

$$|\chi_k(F_k)| \leq |\chi_k(F_{k'})| + |\chi_k(\Delta(F_k,F_{k'}))| = \underbrace{0}_{(\mathcal{A})} + \underbrace{\tilde{O}\Big(\sqrt{|\Delta(F_k,F_{k'})|}\Big)}_{(\mathcal{B})}$$

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(B) For fixed $\mathcal{A} \subseteq 2^X$, $\forall A \in \mathcal{A}, |\mathrm{LM}_{\mathcal{F}}(A)| \le 8\sqrt{|A|\log^5(|\mathcal{A}|mn)}$ w.h.p.

 $\begin{aligned} \forall F, F' \in P_i, |\Delta(F, F')| &\geq \frac{n}{2^i} \Rightarrow |P_i| \leq 2^{id} \quad \text{Haussler (1995)} \\ \forall F_k \in P_i, \exists F_{k'} \in P_{i-1} \text{ s.t. } |\Delta(F_k, F_{k'})| &\leq \frac{n}{2^{i-1}} \end{aligned}$

$$|\chi_k(F_k)| \leq |\chi_k(F_{k'})| + |\chi_k(\Delta(F_k, F_{k'}))| = \underbrace{0}_{(\mathbf{A})} + \underbrace{\tilde{O}\Big(\sqrt{|\Delta(F_k, F_{k'})|}\Big)}_{(\mathbf{B})} = \tilde{O}\Big(\sqrt{\frac{n}{2^{i-1}}}\Big)$$

(A) $\forall F \in \mathcal{F}, |\mathrm{LM}_{\mathcal{F}}(F)| \leq 1$ w.h.p.

(B) For fixed $\mathcal{A} \subseteq 2^X$, $\forall A \in \mathcal{A}, |\mathrm{LM}_{\mathcal{F}}(A)| \le 8\sqrt{|A|\log^5(|\mathcal{A}|mn)}$ w.h.p.

Low-crossing partitions

For $t \in [2, ..., \frac{n}{2}]$, partition X in t subsets $P_1, ..., P_t$ of size $\Theta(\frac{n}{t})$.

For $t \in [2, ..., \frac{n}{2}]$, partition X in t subsets $P_1, ..., P_t$ of size $\Theta(\frac{n}{t})$. **crossing number**: $\max_{F \in \mathcal{F}} \left| \left\{ P \in \{P_1, ..., P_t\} \text{ s.t. } P \quad \text{is crossed by} \quad F \right\} \right|$ $F \cap P \neq \emptyset \text{ and } F^{\complement} \cap P \neq \emptyset$

×

Goal: Compute a small crossing number partition

• Chazelle (1993), then Har-Peled (2000): partial implementations for halfspaces.

• Chazelle (1993), then Har-Peled (2000): partial implementations for halfspaces.

• Matheny, Phillips (2021): full implementation for halfspaces in \mathbb{R}^2 .

• Chazelle (1993), then Har-Peled (2000): partial implementations for halfspaces.

• Matheny, Phillips (2021): full implementation for halfspaces in \mathbb{R}^2 .

Only halfspaces in low dimension.

Result. Under common assumptions on the existence of low-crossing partitions,

 $\forall i \in [1, t], P_i = \left\{x_1, x_2, ..., x_{\frac{n}{t}}\right\}$ can be ordered such that

 $\forall i \in [1, t], P_i = \left\{x_1, x_2, ..., x_{\frac{n}{t}}\right\}$ can be ordered such that

$$\forall k \leq \frac{n}{t}, \{x_1, ..., x_k\} \text{ is crossed by at most } \frac{4im}{n^{\frac{1}{\alpha}}} \cdot k^{\frac{1}{\alpha}} \text{ sets.}$$

 $\forall i \in [1, t], P_i = \left\{x_1, x_2, ..., x_{\frac{n}{t}}\right\}$ can be ordered such that

$$\forall k \leq \frac{n}{t}, \{x_1, ..., x_k\} \text{ is crossed by at most } \frac{4im}{n^{\frac{1}{\alpha}}} \cdot k^{\frac{1}{\alpha}} \text{ sets.}$$

 \Rightarrow Potential function to greedily construct low-crossing partitions.

Results on ε -approximations

Uniform random sample of size $\varepsilon n \Rightarrow$

Construction from low-crossing partition of size $\varepsilon n \Rightarrow$

Construction from low-crossing partition of size $\varepsilon n \Rightarrow \frac{1}{\sqrt{(\varepsilon n)^{\frac{d+1}{d}}}}$ -approximations w.h.p.

Construction from low-crossing partition of size $\varepsilon n \Rightarrow \frac{1}{\sqrt{(\varepsilon n)^{\frac{d+1}{d}}}}$ -approximations w.h.p. Suri, Toth, Zhou (2006)

Results on ε -approximations

• Fast algorithms to compute low-crossing partitions of any set system with guarantees

• Fast algorithms to compute low-crossing partitions of any set system with guarantees

- Near-minimal packing algorithms with sublinear dependence in \boldsymbol{m}

• Fast algorithms to compute low-crossing partitions of any set system with guarantees

- Near-minimal packing algorithms with sublinear dependence in \boldsymbol{m}

• Improving these algorithms in high dimension

• Fast algorithms to compute low-crossing partitions of any set system with guarantees

- Near-minimal packing algorithms with sublinear dependence in \boldsymbol{m}

• Improving these algorithms in high dimension

[Ale90]

Alexander, Ralph: Geometric methods in the study of irregularities of distribution. In: *Combinatorica* vol. 10, Springer (1990)

[Ban10] Bansal, Nikhil: Constructive algorithms for discrepancy minimization. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 2010, pp. 3–10

[Cha93]

Chazelle, Bernard: Cutting hyperplanes for divide-and-conquer. In: *Discrete & Computational Geometry* vol. 9 (1993)

[Har00]

Har-Peled, Sariel: Constructing Planar Cuttings in Theory and Practice. In: *SIAM J. Comput.* vol. 29 (2000)

Haussler, David: Sphere packing numbers for subsets of the Boolean n-cube with
[Hau95] bounded Vapnik-Chervonenkis dimension. In: *Journal of Combinatorial Theory, Series A* vol. 69 (1995)

[LM15]

Lovett, Shachar ; Meka, Raghu: Constructive Discrepancy Minimization by Walking on the Edges. In: *SIAM Journal on Computing* vol. 44 (2015)

 Levy, Avi ; Ramadas, Harishchandra ; Rothvoss, Thomas: Deterministic
[LRR17] Discrepancy Minimization via the Multiplicative Weight Update Method. In: Integer Programming and Combinatorial Optimization, 2017

[Mat92]

Matoušek, Jiří: Efficient partition trees. In: Discrete & Computational Geometry vol.
8 (1992)

 Matheny, Michael ; Phillips, Jeff M: Approximate Maximum Halfspace
[MP21] Discrepancy. In: 32nd International Symposium on Algorithms and Computation (ISAAC 2021), 2021

Spencer, Joel: Six standard deviations suffice. In: *Transactions of the American Mathematical Society* vol. 289 (1985)

Suri, Subhash ; Toth, Csaba D ; Zhou, Yunhong: Range Counting over [STZ06] Multidimensional Data Streams. In: *Discrete & Computational Geometry* vol. 36 (2006)

[Tal94]

Talagrand, Michel: Sharper Bounds for Gaussian and Empirical Processes. In: *The Annals of Probability* vol. 22 (1994)