Maximal δ -packings for finite VC-dimension set systems and application to discrepancy Joint work with Victor-Emmanuel Brunel and Nabil Mustafa

Alexandre Louvet

Université Sorbonne Paris Nord

October 10, 2023

Alexandre Louvet (USPN)

 δ -packings for finite VC and discrepancy

October 10, 2023

Table of Contents

δ -packings

- Geometric set systems
- Combinatorial set systems

Algorithms for δ -packings/coverings

3 Application

- Discrepancy
- ε-approximation

Given (X, \mathcal{F}) a set system, a δ -packing is a collection $\mathcal{P} \subseteq \mathcal{F}$ such that:

Given (X, \mathcal{F}) a set system, a δ -packing is a collection $\mathcal{P} \subseteq \mathcal{F}$ such that:

Given (X, \mathcal{F}) a set system, a δ -packing is a collection $\mathcal{P} \subseteq \mathcal{F}$ such that:

Given (X, \mathcal{F}) a set system, a δ -packing is a collection $\mathcal{P} \subseteq \mathcal{F}$ such that:

Given (X, \mathcal{F}) a set system, a δ -packing is a collection $\mathcal{P} \subseteq \mathcal{F}$ such that:

$\delta\text{-packings}$

We will study maximal packings

Alexandre Louvet	(USPN))
------------------	--------	---

문 문 문

A δ -covering is a collection $\mathcal{C} \subseteq \mathcal{F}$ such that:

 $\forall F \in \mathcal{F}, \exists C \in \mathcal{C} \text{ s.t. } |\Delta(F, C)| \leq \delta$

A δ -covering is a collection $\mathcal{C} \subseteq \mathcal{F}$ such that:

 $\forall F \in \mathcal{F}, \exists C \in \mathcal{C} \text{ s.t. } |\Delta(F, C)| \leq \delta$

A δ -covering is a collection $\mathcal{C} \subseteq \mathcal{F}$ such that:

 $\forall F \in \mathcal{F}, \exists C \in \mathcal{C} \text{ s.t. } |\Delta(F, C)| \leq \delta$

A maximal $\delta\text{-packing}$ is a minimal $\delta\text{-covering},$ however the opposite is not true

Consider the set system $([n], 2^{[n]})$ and $\delta \in [0, n]$,

Consider the set system $([n], 2^{[n]})$ and $\delta \in [0, n]$,

• Partition X in $X_1, X_2, \ldots, X_{rac{n}{\delta}}$ each of size δ

Consider the set system $([n], 2^{[n]})$ and $\delta \in [0, n]$,

• Partition X in $X_1, X_2, \ldots, X_{rac{n}{\delta}}$ each of size δ

• Consider the sets
$$\left\{\bigcup_{i\in I} X_i : I\subseteq \left[\frac{n}{\delta}\right]\right\}$$

Consider the set system $([n], 2^{[n]})$ and $\delta \in [0, n]$,

• Partition X in $X_1, X_2, \ldots, X_{rac{n}{\delta}}$ each of size δ

• Consider the sets
$$\left\{\bigcup_{i\in I} X_i : I \subseteq \begin{bmatrix}n\\\delta\end{bmatrix}\right\}$$

 $\bullet\,$ Any two distinct unions are at symmetric difference at least $\delta\,$

Consider the set system $([n], 2^{[n]})$ and $\delta \in [0, n]$,

• Partition X in $X_1, X_2, \ldots, X_{rac{n}{\delta}}$ each of size δ

• Consider the sets
$$\left\{\bigcup_{i\in I} X_i : I\subseteq [\frac{n}{\delta}]\right\}$$

- $\bullet\,$ Any two distinct unions are at symmetric difference at least $\delta\,$
- They form a packing of size $2^{\frac{n}{\delta}}$

• P1: Improving the bound on maximal packing's size (extensively studied)

< ∃⇒

æ

Image: A matrix

- P1: Improving the bound on maximal packing's size (extensively studied)
 - $\rightarrow~$ [Hau95] for finite VC-dimension set systems

- P1: Improving the bound on maximal packing's size (extensively studied)
 - $\rightarrow~$ [Hau95] for finite VC-dimension set systems
 - $\rightarrow~[{\rm Fox}{+}15]$ for semi-algebraic set systems

- P1: Improving the bound on maximal packing's size (extensively studied)
 - $\rightarrow~$ [Hau95] for finite VC-dimension set systems
 - $\rightarrow~[{\rm Fox}{+}15]$ for semi-algebraic set systems
 - $\rightarrow~[{\sf DEG16};~{\sf Mus16}]$ for set systems with bounded shallow-cell complexity

- P1: Improving the bound on maximal packing's size (extensively studied)
 - $\rightarrow~$ [Hau95] for finite VC-dimension set systems
 - $\rightarrow~[{\rm Fox}{+}15]$ for semi-algebraic set systems
 - ightarrow [DEG16; Mus16] for set systems with bounded shallow-cell complexity
- P2: Efficient algorithms to compute approximate maximal packings/minimal coverings

- P1: Improving the bound on maximal packing's size (extensively studied)
 - $\rightarrow~$ [Hau95] for finite VC-dimension set systems
 - $\rightarrow~[{\rm Fox}{+}15]$ for semi-algebraic set systems
 - ightarrow [DEG16; Mus16] for set systems with bounded shallow-cell complexity
- P2: Efficient algorithms to compute approximate maximal packings/minimal coverings
 - \rightarrow [MWW93b] finds an approximate δ -covering in time $O\left(\frac{mn^2}{\delta^2}\right)$

- P1: Improving the bound on maximal packing's size (extensively studied)
 - $\rightarrow~$ [Hau95] for finite VC-dimension set systems
 - $\rightarrow~[{\rm Fox}{+}15]$ for semi-algebraic set systems
 - ightarrow [DEG16; Mus16] for set systems with bounded shallow-cell complexity
- P2: Efficient algorithms to compute approximate maximal packings/minimal coverings
 - \rightarrow [MWW93b] finds an approximate δ -covering in time $O\left(\frac{mn^2}{\delta^2}\right)$
 - \to A greedy algorithm finds a maximal δ -packing in time $O\left(mn\left(rac{n}{\delta}
 ight)^d
 ight)$

(X, \mathcal{F}) induced by halfspaces

(X, \mathcal{F}) induced by halfspaces

(X, \mathcal{F}) induced by halfspaces

(X, \mathcal{F}) induced by halfspaces

(X, \mathcal{F}) induced by halfspaces

 $E \subseteq X$ is in \mathcal{F} iff there exists a halfspace H such that $H \cap X = E$

Alexandre Louvet (USPN)

(X,\mathcal{F}) induced by halfspaces

 $E \subseteq X$ is in \mathcal{F} iff there exists a halfspace H such that $H \cap X = E$

Theorem:

A packing of a set system induced by halfspaces in \mathbb{R}^d has size at most $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Cuttings

We introduce a partition of space called *cuttings* that we will use for the proof of the packing bound.

Given a set *H* of hyperplanes in E^d , a $\frac{1}{r}$ -cutting for *H* is a collection of *d*-dimensional simplices with disjoint interiors, together covering E^d and such that the interior of each simplex intersects at most $\frac{|H|}{r}$ hyperplanes.

Cuttings

We introduce a partition of space called *cuttings* that we will use for the proof of the packing bound.

Given a set *H* of hyperplanes in E^d , a $\frac{1}{r}$ -cutting for *H* is a collection of *d*-dimensional simplices with disjoint interiors, together covering E^d and such that the interior of each simplex intersects at most $\frac{|H|}{r}$ hyperplanes.

Theorem [Cha93] One can construct a $\frac{1}{r}$ -cutting of size $O(r^d)$ in time $O(nr^{d-1})$

Theorem:

A packing of a set system induced by halfspaces in \mathbb{R}^d has size at most $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Theorem:

A packing of a set system induced by halfspaces in \mathbb{R}^d has size at most $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Proof sketch:

• Given a set system (X, \mathcal{F}) consider its dual (Y, \mathcal{G})

Theorem:

A packing of a set system induced by halfspaces in \mathbb{R}^d has size at most $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Proof sketch:

- Given a set system (X, \mathcal{F}) consider its dual (Y, \mathcal{G})
- A $\frac{\delta}{n}$ -cutting of (Y, \mathcal{G}) gives a collection of $O\left(\left(\frac{n}{\delta}\right)^d\right)$ each intersected by at most δ hyperplanes

Theorem:

A packing of a set system induced by halfspaces in \mathbb{R}^d has size at most $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Proof sketch:

- Given a set system (X, \mathcal{F}) consider its dual (Y, \mathcal{G})
- A $\frac{\delta}{n}$ -cutting of (Y, \mathcal{G}) gives a collection of $O\left(\left(\frac{n}{\delta}\right)^d\right)$ each intersected by at most δ hyperplanes
- The number of hyperplanes of \mathcal{G} intersecting the segment between two elements of Y is equal to the symmetric difference between the dual of these two elements in \mathcal{F}
Proof of the packing bound for halfspaces

Theorem:

A packing of a set system induced by halfspaces in \mathbb{R}^d has size at most $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Proof sketch:

- Given a set system (X, \mathcal{F}) consider its dual (Y, \mathcal{G})
- A $\frac{\delta}{n}$ -cutting of (Y, \mathcal{G}) gives a collection of $O\left(\left(\frac{n}{\delta}\right)^d\right)$ each intersected by at most δ hyperplanes
- The number of hyperplanes of \mathcal{G} intersecting the segment between two elements of Y is equal to the symmetric difference between the dual of these two elements in \mathcal{F}
- Thus a packing can only contain at most one element from each simplex which gives a bound of $O\left(\left(\frac{n}{\delta}\right)^d\right)$ on its size

The VC-dimension of a set system (X, \mathcal{F}) , is the size of the largest $Y \subseteq X$ for which $|F \cap Y : F \in \mathcal{F}| = 2^{|Y|}$

The VC-dimension of a set system (X, \mathcal{F}) , is the size of the largest $Y \subseteq X$ for which $|F \cap Y : F \in \mathcal{F}| = 2^{|Y|}$

Halfspaces

Set system spanned by halfspaces of \mathbb{R}^d have VC-dimension d+1

The VC-dimension of a set system (X, \mathcal{F}) , is the size of the largest $Y \subseteq X$ for which $|F \cap Y : F \in \mathcal{F}| = 2^{|Y|}$

Halfspaces

Set system spanned by halfspaces of \mathbb{R}^d have VC-dimension d+1

Sauer-Shelah lemma [Sau72; She72]

If (X, \mathcal{F}) has VC-dimension $\leq d$, then $|\mathcal{F}| = O(n^d)$

Let (X, \mathcal{F}) be a set system with finite VC-dimension $\leq d$, then δ -packing of (X, \mathcal{F}) has size $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Let (X, \mathcal{F}) be a set system with finite VC-dimension $\leq d$, then δ -packing of (X, \mathcal{F}) has size $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Interpretation:

• The symmetric difference can be seen as a metric for sets

Let (X, \mathcal{F}) be a set system with finite VC-dimension $\leq d$, then δ -packing of (X, \mathcal{F}) has size $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Interpretation:

- The symmetric difference can be seen as a metric for sets
- Then the $\delta\text{-packing}$ question is similar to packing spheres of radius δ in a sphere of radius n

Let (X, \mathcal{F}) be a set system with finite VC-dimension $\leq d$, then δ -packing of (X, \mathcal{F}) has size $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Interpretation:

- The symmetric difference can be seen as a metric for sets
- Then the $\delta\text{-packing}$ question is similar to packing spheres of radius δ in a sphere of radius n
- The volume of a sphere of radius δ in \mathbb{R}^d is $O(\delta^d)$, thus the packing would have size $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Let (X, \mathcal{F}) be a set system with finite VC-dimension $\leq d$, then δ -packing of (X, \mathcal{F}) has size $O\left(\left(\frac{n}{\delta}\right)^d\right)$

Interpretation:

- The symmetric difference can be seen as a metric for sets
- Then the $\delta\text{-packing}$ question is similar to packing spheres of radius δ in a sphere of radius n
- The volume of a sphere of radius δ in \mathbb{R}^d is $O(\delta^d)$, thus the packing would have size $O\left(\left(\frac{n}{\delta}\right)^d\right)$
- This theorem shows that packing sets of VC-dimension d is similar to sphere packing in \mathbb{R}^d

Table of Contents

δ -packings

- Geometric set systems
- Combinatorial set systems

2 Algorithms for δ -packings/coverings

3 Application

- Discrepancy
- ε-approximation

We look at efficient algorithms to compute packings/coverings:

Recall:

We look at efficient algorithms to compute packings/coverings:

Recall:

• A greedy algorithm finds a maximal δ -packing in time $O\left(mn\left(\frac{n}{\delta}\right)^d\right)$

We look at efficient algorithms to compute packings/coverings:

Recall:

- A greedy algorithm finds a maximal δ -packing in time $O\left(mn\left(\frac{n}{\delta}\right)^d\right)$
- [MWW93b] finds a δ -covering of size $O\left(\left(\frac{n}{\delta}\log\left(\frac{n}{\delta}\right)\right)^d\right)$ in time $O\left(\frac{mn^2}{\delta^2}\right)$

We look at efficient algorithms to compute packings/coverings:

Recall:

- A greedy algorithm finds a maximal δ -packing in time $O\left(mn\left(\frac{n}{\delta}\right)^d\right)$
- [MWW93b] finds a δ -covering of size $O\left(\left(\frac{n}{\delta}\log\left(\frac{n}{\delta}\right)\right)^d\right)$ in time $O\left(\frac{mn^2}{\delta^2}\right)$

A *near-maximal* δ -packing of a set system (X, \mathcal{F}) is collection $\mathcal{P} \subseteq \mathcal{F}$ such that:

- \mathcal{P} is a δ -packing
- \mathcal{P} is a 3δ -covering

We look at efficient algorithms to compute packings/coverings:

Recall:

- A greedy algorithm finds a maximal δ -packing in time $O\left(mn\left(\frac{n}{\delta}\right)^d\right)$
- [MWW93b] finds a δ -covering of size $O\left(\left(\frac{n}{\delta}\log\left(\frac{n}{\delta}\right)\right)^d\right)$ in time $O\left(\frac{mn^2}{\delta^2}\right)$

A *near-maximal* δ -packing of a set system (X, \mathcal{F}) is collection $\mathcal{P} \subseteq \mathcal{F}$ such that:

- \mathcal{P} is a δ -packing
- \mathcal{P} is a 3 δ -covering

Theorem

We compute a near-maximal δ -packing in time $\tilde{O}\left(\frac{mn^2}{\delta^2} + \left(\frac{n}{\delta}\right)^{2d+2}\right)$.

Alexandre Louvet (USPN)

Proof: ε – approximation

Alexandre Louvet (USPN)

We introduce ε -approximation which we need for our algorithm:

э

14/32

Proof: ε – approximation

We introduce ε -approximation which we need for our algorithm:

Given (X, \mathcal{F}) , an ε -approximation is a set A such that:

$$\forall F \in \mathcal{F}, \left| \frac{|F|}{|X|} - \frac{|F \cap A|}{|A|} \right| \leq \varepsilon$$

Proof: ε – approximation

We introduce ε -approximation which we need for our algorithm:

Given (X, \mathcal{F}) , an ε -approximation is a set A such that:

$$\forall F \in \mathcal{F}, \left| \frac{|F|}{|X|} - \frac{|F \cap A|}{|A|} \right| \le \varepsilon$$

 $|X| = 22, \varepsilon = 1/22$ (no more than one element difference in each set)

Proof: Constructing a packing

We first show how to construct a near-maximal δ -packing:

< □ > < 凸

э

∃ >

Algorithm $Packing(\mathcal{F})$

- 1: $A \leftarrow$ random sample of X of size $O\left(\frac{4n^2}{\delta^2}\right)$ 2: $\mathcal{P} \leftarrow \emptyset$ 3: for $F \in \mathcal{F}$ do 4: if $\forall P \in \mathcal{P}, |\Delta(P \cap A, F \cap A)| \geq \frac{3n}{2\delta}$ then 5: $\mathcal{P} \leftarrow \mathcal{P} \cup \{F\}$ 6: end if 7: end for
- 8: return \mathcal{P}

Algorithm Packing(\mathcal{F}) 1: $A \leftarrow$ random sample of X of size $O\left(\frac{4n^2}{\delta^2}\right)$ • A is a $\frac{\delta}{2}$ -approximation of (X, \mathcal{F}) 2. $\mathcal{P} \leftarrow \emptyset$ 3: for $F \in \mathcal{F}$ do 4: **if** $\forall P \in \mathcal{P}, |\Delta(P \cap A, F \cap$ $|A| \geq \frac{3n}{2\delta}$ then 5: $\mathcal{P} \leftarrow \mathcal{P} \cup \{F\}$ end if 6: 7: end for

Algorithm Packing(\mathcal{F}) 1: $A \leftarrow$ random sample of X of size $O\left(\frac{4n^2}{\delta^2}\right)$ • A is a $\frac{\delta}{2}$ -approximation of (X, \mathcal{F}) 2. $\mathcal{P} \leftarrow \emptyset$ $\rightarrow \delta = \frac{3\delta}{2} - \frac{\delta}{2} \leq |\Delta(P,F)| \leq$ 3: for $F \in \mathcal{F}$ do $\frac{3\delta}{2} + \frac{\delta}{2} = 2\delta$ 4: **if** $\forall P \in \mathcal{P}, |\Delta(P \cap A, F \cap$ $|A| \geq \frac{3n}{2\delta}$ then 5: $\mathcal{P} \leftarrow \mathcal{P} \cup \{F\}$ end if 6: 7: end for

8: return \mathcal{P}

Algorithm $Packing(\mathcal{F})$

- 1: $A \leftarrow$ random sample of X of size $O\left(\frac{4n^2}{\delta^2}\right)$ 2: $\mathcal{P} \leftarrow \emptyset$
- 3: for $F \in \mathcal{F}$ do
- 4: **if** $\forall P \in \mathcal{P}, |\Delta(P \cap A, F \cap A)| \geq \frac{3n}{2\lambda}$ then
- 5: $\mathcal{P} \leftarrow \mathcal{P} \cup \{F\}$
- 6: end if
- 7: end for
- 8: return \mathcal{P}

• A is a $\frac{\delta}{2}$ -approximation of (X, \mathcal{F})

$$ightarrow \delta = rac{3\delta}{2} - rac{\delta}{2} \le |\Delta(P, F)| \le rac{3\delta}{2} + rac{\delta}{2} = 2\delta$$

$$ightarrow \overline{\mathcal{P}}$$
 is a δ -packing and a 2δ -covering

Alexandre Louvet (USPN)

We introduce ε -nets which we need for our algorithm:

< A

э

Proof: ε – *nets*

We introduce ε -nets which we need for our algorithm:

Given (X, \mathcal{F}) , an ε -net is a set N such that:

 $\forall F \in \mathcal{F}, |F| \geq \varepsilon |X|, |F \cap N| > 0$

э

Proof: ε – *nets*

We introduce ε -nets which we need for our algorithm:

Given (X, \mathcal{F}) , an ε -net is a set N such that:

 $\forall F \in \mathcal{F}, |F| \geq \varepsilon |X|, |F \cap N| > 0$

 $|X| = 22, \varepsilon = 5/22$ (sets with 5 elements and more)

Alexandre Louvet (USPN)

We show how to construct a small δ -covering:

Alexandre Louvet (USPN)

 δ -packings for finite VC and discrepancy

We show how to construct a small δ -covering:

Algorithm δ -covering algorithm

- $1: \ \mathcal{S} \gets \emptyset$
- $2: \ \mathcal{C} \gets \emptyset$
- 3: $N \leftarrow$ uniform random sample of X of size $O\left(\frac{n}{\lambda}\log\left(\frac{n}{\lambda}\right)\right)$
- 4: for $F \in \mathcal{F}$ do
- 5: $Q \leftarrow F \cap N$
- 6: **if** $Q \notin S$ **then**
- 7: $\mathcal{S} \leftarrow \mathcal{S} \cup \{Q\}$
- 8: $\mathcal{C} \leftarrow \mathcal{C} \cup \{F\}$
- 9: end if
- 10: **end for**
- 11: return (C)

We show how to construct a small $\delta\text{-covering}:$

Algorithm δ -covering algorithm

- 1: $\mathcal{S} \leftarrow \emptyset$
- $2: \ \mathcal{C} \gets \emptyset$
- 3: $N \leftarrow \text{uniform random sample of} X$ of size $O\left(\frac{n}{\delta}\log\left(\frac{n}{\delta}\right)\right)$
- 4: for $F \in \mathcal{F}$ do
- 5: $Q \leftarrow F \cap N$
- 6: **if** $Q \notin S$ **then**
- 7: $\mathcal{S} \leftarrow \mathcal{S} \cup \{Q\}$
- 8: $\mathcal{C} \leftarrow \mathcal{C} \cup \{F\}$
- 9: end if
- 10: **end for**
- 11: return (C)

• *N* is a $\frac{\delta}{n}$ -net, i.e. sets bigger than δ contain an element of *N*

We show how to construct a small δ -covering:

Algorithm δ -covering algorithm

- 1: $\mathcal{S} \leftarrow \emptyset$
- $2: \ \mathcal{C} \gets \emptyset$
- 3: $N \leftarrow$ uniform random sample of X of size $O\left(\frac{n}{\delta}\log\left(\frac{n}{\delta}\right)\right)$
- 4: for $F \in \mathcal{F}$ do
- 5: $Q \leftarrow F \cap N$
- 6: **if** $Q \notin S$ **then**
- 7: $\mathcal{S} \leftarrow \mathcal{S} \cup \{Q\}$
- 8: $\mathcal{C} \leftarrow \mathcal{C} \cup \{F\}$
- 9: end if
- 10: **end for**
- 11: return (C)

- *N* is a $\frac{\delta}{n}$ -net, i.e. sets bigger than δ contain an element of *N*
- If $F, F' \in \mathcal{F}$ are such that $F \cap N = F' \cap N$, then $|\Delta(F, F')| \leq \delta$

We show how to construct a small δ -covering:

Algorithm δ -covering algorithm

- $1: \ \mathcal{S} \gets \emptyset$
- $2: \ \mathcal{C} \gets \emptyset$
- 3: $N \leftarrow$ uniform random sample of X of size $O\left(\frac{n}{\delta}\log\left(\frac{n}{\delta}\right)\right)$
- 4: for $F \in \mathcal{F}$ do
- 5: $Q \leftarrow F \cap N$
- 6: **if** $Q \notin S$ **then**
- 7: $\mathcal{S} \leftarrow \mathcal{S} \cup \{Q\}$
- 8: $\mathcal{C} \leftarrow \mathcal{C} \cup \{F\}$
- 9: end if
- 10: **end for**
- 11: return (C)

- *N* is a $\frac{\delta}{n}$ -net, i.e. sets bigger than δ contain an element of *N*
- If $F, F' \in \mathcal{F}$ are such that $F \cap N = F' \cap N$, then $|\Delta(F, F')| \le \delta$

By Sauer-Shelah's lemma, $|\mathcal{C}| = O\left(|\mathcal{N}|^d\right) = O\left(\left(\frac{n}{\delta}\right)^d \log^d\left(\frac{n}{\delta}\right)\right)$ • Compute a $O\left(\left(\frac{n}{\delta}\right)^d \log^d\left(\frac{n}{\delta}\right)\right)$ -size δ -covering C. This takes time $O\left(\frac{mn^2}{\delta^2} + \left(\frac{n}{\delta}\right)^d \log^d\left(\frac{n}{\delta}\right)\right)$

- Compute a $O\left(\left(\frac{n}{\delta}\right)^d \log^d\left(\frac{n}{\delta}\right)\right)$ -size δ -covering C. This takes time $O\left(\frac{mn^2}{\delta^2} + \left(\frac{n}{\delta}\right)^d \log^d\left(\frac{n}{\delta}\right)\right)$
- Apply the packing algorithm on C to obtain a δ -packing \mathcal{P} . The result is a 3δ -covering since $\forall F \in \mathcal{F}, \exists C \in C \text{ s.t. } \Delta(F, C) \leq \delta$ and $\forall C \in C, \exists P \in \mathcal{P} \text{ s.t. } \Delta(C, P) \leq 2\delta$

- Compute a $O\left(\left(\frac{n}{\delta}\right)^d \log^d\left(\frac{n}{\delta}\right)\right)$ -size δ -covering C. This takes time $O\left(\frac{mn^2}{\delta^2} + \left(\frac{n}{\delta}\right)^d \log^d\left(\frac{n}{\delta}\right)\right)$
- Apply the packing algorithm on C to obtain a δ -packing \mathcal{P} . The result is a 3δ -covering since $\forall F \in \mathcal{F}, \exists C \in C$ s.t. $\Delta(F, C) \leq \delta$ and $\forall C \in C, \exists P \in \mathcal{P}$ s.t. $\Delta(C, P) \leq 2\delta$
- This takes time $O\left(\left(\frac{n}{\delta}\right)^{2d+2}\log^d\left(\frac{n}{\delta}\right)\right)$ giving total runtime of $\tilde{O}\left(\frac{mn^2}{\delta^2} + \left(\frac{n}{\delta}\right)^{2d+2}\right)$

Table of Contents

δ -packings

- Geometric set systems
- Combinatorial set systems

Algorithms for δ -packings/coverings

3 Application

- Discrepancy
- ε-approximation
Set discrepancy

We want to compute a 2-coloring $\chi : X \to \{-1, 1\}$ s.t. $\forall F \in \mathcal{F}, \chi(F) = \sum_{x \in F} \chi(x)$ is small. We call discrepancy and denote:

$$\operatorname{disc}(X,\mathcal{F}) = \max_{F \in \mathcal{F}} |\chi(F)|$$

< ∃ ►

< 47 ▶

э

Set discrepancy

We want to compute a 2-coloring $\chi : X \to \{-1, 1\}$ s.t. $\forall F \in \mathcal{F}, \chi(F) = \sum_{x \in F} \chi(x)$ is small. We call discrepancy and denote:

 $\mathsf{disc}(X,\mathcal{F}) = \max_{F \in \mathcal{F}} |\chi(F)|$

 Matousek [Mat95] proved that for VC-dimension ≤ d set systems disc((X, F)) = O(n^{1/2-1/2d}). This result is non-constructive and is obtained using chaining.

- Matousek [Mat95] proved that for VC-dimension ≤ d set systems disc((X, F)) = O(n^{1/2-1/2d}). This result is non-constructive and is obtained using chaining.
- Lovett and Meka [LM12] obtain optimal discrepancy for general set systems when m = n in time $\tilde{O}((m + n)^3)$

- Matousek [Mat95] proved that for VC-dimension ≤ d set systems disc((X, F)) = O(n^{1/2-1/2d}). This result is non-constructive and is obtained using chaining.
- Lovett and Meka [LM12] obtain optimal discrepancy for general set systems when m = n in time $\tilde{O}((m + n)^3)$
- Matousek,Welzl and Wernisch [MWW93a]'s cover algorithm used with [LM12] gives discrepancy $O\left(n^{1/2-1/2d}\log^{3/2}(n)\right)$ in time $O\left(mn^{2/d} + n^3\log^{3d}(n)\right)$

- Matousek [Mat95] proved that for VC-dimension ≤ d set systems disc((X, F)) = O(n^{1/2-1/2d}). This result is non-constructive and is obtained using chaining.
- Lovett and Meka [LM12] obtain optimal discrepancy for general set systems when m = n in time $\tilde{O}((m + n)^3)$
- Matousek,Welzl and Wernisch [MWW93a]'s cover algorithm used with [LM12] gives discrepancy $O\left(n^{1/2-1/2d}\log^{3/2}(n)\right)$ in time $O\left(mn^{2/d} + n^3\log^{3d}(n)\right)$
- The greedy packing algorithm with [LM12] gives discrepancy $O\left(n^{1/2-1/2d}\log^{1/2}(n)\right)$ in time $O\left(mn^2 + n^3\right)$

- Matousek [Mat95] proved that for VC-dimension ≤ d set systems disc((X, F)) = O(n^{1/2-1/2d}). This result is non-constructive and is obtained using chaining.
- Lovett and Meka [LM12] obtain optimal discrepancy for general set systems when m = n in time $\tilde{O}((m + n)^3)$
- Matousek,Welzl and Wernisch [MWW93a]'s cover algorithm used with [LM12] gives discrepancy $O\left(n^{1/2-1/2d}\log^{3/2}(n)\right)$ in time $O\left(mn^{2/d} + n^3\log^{3d}(n)\right)$
- The greedy packing algorithm with [LM12] gives discrepancy $O\left(n^{1/2-1/2d}\log^{1/2}(n)\right)$ in time $O\left(mn^2 + n^3\right)$

Theorem:

Given a set system of VC-dimension $\leq d$, we compute a coloring with discrepancy $O\left(n^{1/2-1/2d}\right)$ in time $O\left(mn^{2/d} + n^3\log^{3d}(n)\right)$

Alexandre Louvet (USPN)

21 / 32

э

• Given two sets $F, F' : \operatorname{disc}(F) \leq \operatorname{disc}(F') + \operatorname{disc}(F \setminus F') + \operatorname{disc}(F' \setminus F)$

- Given two sets F, F': disc $(F) \leq disc(F')+disc(F \setminus F')+disc(F' \setminus F)$
- We compute a near-maximal $n^{1-1/d}$ -packing and use [LM12]'s algorithm such that all set in the packing have discrepancy $O(n^{1/2-1/2d})$

- Given two sets F, F': disc $(F) \leq disc(F')+disc(F \setminus F')+disc(F' \setminus F)$
- We compute a near-maximal $n^{1-1/d}$ -packing and use [LM12]'s algorithm such that all set in the packing have discrepancy $O(n^{1/2-1/2d})$
- [LM12] gives $\sqrt{|S|\log(m)}$ discrepancy on a set S not used as constraint. Thus the symmetric difference sets have discrepancy $\sqrt{n^{1-1/d}\log(m)}$

- Given two sets F, F': disc $(F) \leq disc(F')+disc(F \setminus F')+disc(F' \setminus F)$
- We compute a near-maximal $n^{1-1/d}$ -packing and use [LM12]'s algorithm such that all set in the packing have discrepancy $O(n^{1/2-1/2d})$
- [LM12] gives $\sqrt{|S|\log(m)}$ discrepancy on a set S not used as constraint. Thus the symmetric difference sets have discrepancy $\sqrt{n^{1-1/d}\log(m)}$
- This gives $\operatorname{disc}(F) \leq \operatorname{disc}(P) + \operatorname{disc}(P \setminus F) + \operatorname{disc}(F \setminus P) = O\left(\sqrt{n^{1-1/d} \log(m)}\right)$

• We compute near-maximal $\frac{n^{1-1/d}}{2^i}$ -packing \mathcal{P}_i (for $i \in [0, \log \log m]$)

- We compute near-maximal $\frac{n^{1-1/d}}{2^i}$ -packing \mathcal{P}_i (for $i \in [0, \log \log m]$)
- disc(F) \leq disc(P_0)+disc($\Delta(P_0, P_1)$) + ...+disc($\Delta(P_{\log \log m-1}, P_{\log \log m})$) + disc(E), where $|E| \leq \frac{n^{1-1/d}}{\log(m)}$

- We compute near-maximal $\frac{n^{1-1/d}}{2^i}$ -packing \mathcal{P}_i (for $i \in [0, \log \log m]$)
- disc(F) \leq disc(P_0)+disc($\Delta(P_0, P_1)$) + ...+disc($\Delta(P_{\log \log m-1}, P_{\log \log m})$) + disc(E), where $|E| \leq \frac{n^{1-1/d}}{\log(m)}$
- *E* has discrepancy $O(n^{1/2-1/2d})$ and by carefully choosing the parameters to use [LM12], so does $\sum_{i=1}^{\log \log(m)} \operatorname{disc}(\Delta(P_{i-1}, P_i))$

• We compute near-maximal $\frac{n^{1-1/d}}{2^i}$ -packing \mathcal{P}_i (for $i \in [0, \log \log m]$) • disc(F) \leq disc(P_0)+disc($\Delta(P_0, P_1)$) + $\dots + \operatorname{disc}(\Delta(P_{\log \log m-1}, P_{\log \log m})) + \operatorname{disc}(E)$, where $|E| \leq \frac{n^{1-1/d}}{\log(m)}$ • E has discrepancy $O(n^{1/2-1/2d})$ and by carefully choosing the $\log \log(m)$ parameters to use [LM12], so does $\sum_{i=1}^{n} \operatorname{disc}(\Delta(P_{i-1}, P_i))$ log log m • We use [LM12] with *n* points and $\sum_{i=1}^{\infty} |\mathcal{P}_i| = n \log(n)$ sets which gives runtime $O(n^3 \log^{3d}(n))$

• By computing iterated discrepancy, we obtain an ε -approximation of size $O\left(\varepsilon^{-\frac{2d}{d+1}}\right)$ in time $O\left(\left[mn^{2/d} + n^3 \log^{3d}(n)\right] \log\left(\frac{1}{\varepsilon}\right)\right)$

- By computing iterated discrepancy, we obtain an ε -approximation of size $O\left(\varepsilon^{-\frac{2d}{d+1}}\right)$ in time $O\left(\left[mn^{2/d} + n^3 \log^{3d}(n)\right] \log\left(\frac{1}{\varepsilon}\right)\right)$
- Using the merge and reduce framework [CM96], this gives an ε -approximation of size $O\left(\varepsilon^{-\frac{2d}{d+1}}\right)$ in time $\tilde{O}\left(\frac{n}{\varepsilon^{2d}}\right)$

 Is it possible to find a polynomial-time algorithm for (near-)maximal packings with degree < d (for δ bigger than a constant)?

э

- Is it possible to find a polynomial-time algorithm for (near-)maximal packings with degree < d (for δ bigger than a constant)?
- Is it possible to find faster algorithm set systems with smaller packing size than Haussler's bound?

References I

[Sau72]

N Sauer. "On the density of families of sets". en. In: *Journal* of Combinatorial Theory, Series A 13.1 (July 1972), pp. 145–147. ISSN: 0097-3165. DOI: 10.1016/0097-3165(72)90019-2.

[She72] Saharon Shelah. "A combinatorial problem; stability and order for models and theories in infinitary languages". In: *Pacific Journal of Mathematics* 41.1 (1972), pp. 247–261.

[Cha93] Bernard Chazelle. "Cutting hyperplanes for divide-and-conquer". en. In: Discrete & Computational Geometry 9.2 (Feb. 1993), pp. 145–158. ISSN: 0179-5376, 1432-0444. DOI: 10.1007/BF02189314. [MWW93a] Jiri Matousek. Emo Welzl. and Lorenz Wernisch. "Discrepancy and approximations for bounded VC-dimension". en. In: *Combinatorica* 13.4 (Dec. 1993), pp. 455–466. ISSN: 1439-6912. DOI: 10.1007/BF01303517. Jiří Matoušek, Emo Welzl, and Lorenz Wernisch. [MWW93b] "Discrepancy and approximations for bounded VC-dimension". en. In: Combinatorica 13.4 (Dec. 1993), pp. 455-466. ISSN: 1439-6912. DOI: 10.1007/BF01303517. [Hau95] David Haussler. "Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension". en. In: Journal of Combinatorial Theory, Series A 69.2 (Feb. 1995), pp. 217–232. ISSN: 0097-3165. DOI: 10.1016/0097 - 3165(95)90052 - 7.

27 / 32

[Mat95]

J. Matousek. "Tight upper bounds for the discrepancy of half-spaces". en. In: *Discrete & Computational Geometry* 13.3 (June 1995), pp. 593–601. ISSN: 1432-0444. DOI: 10.1007/BF02574066.

[CM96] Bernard Chazelle and Jiří Matoušek. "On Linear-Time Deterministic Algorithms for Optimization Problems in Fixed Dimension". en. In: Journal of Algorithms 21.3 (Nov. 1996), pp. 579–597. ISSN: 01966774. DOI: 10.1006/jagm.1996.0060.

[Cha01] Bernard Chazelle. The discrepancy method: randomness and complexity. 2001.

References IV

[LM12]

Shachar Lovett and Raghu Meka. Constructive Discrepancy Minimization by Walking on The Edges. arXiv:1203.5747 [cs, math] version: 1. Mar. 2012. DOI: 10.48550/arXiv.1203.5747. URL: http://arxiv.org/abs/1203.5747 (visited on 09/01/2022).

[Fox+15] Jacob Fox et al. "A semi-algebraic version of Zarankiewicz's problem". In: arXiv:1407.5705 (Nov. 2015). arXiv:1407.5705 [math]. URL: http://arxiv.org/abs/1407.5705.

[DEG16] Kunal Dutta, Esther Ezra, and Arijit Ghosh. "Two Proofs for Shallow Packings". en. In: Discrete & Computational Geometry 56.4 (Dec. 2016), pp. 910–939. ISSN: 1432-0444. DOI: 10.1007/s00454-016-9824-0.

- 4 回 ト - 4 回 ト

[Mus16]

Nabil H. Mustafa. "A Simple Proof of the Shallow Packing Lemma". en. In: *Discrete & Computational Geometry* 55.3 (Apr. 2016), pp. 739–743. ISSN: 1432-0444. DOI: 10.1007/s00454-016-9767-5.

Consider the coloring χ as a vector x of {-1,1}ⁿ (according to some ordering of X)

- Consider the coloring χ as a vector x of {-1,1}ⁿ (according to some ordering of X)
- Consider each element of \mathcal{F} as its indicator vector v_F (according to the same ordering)

- Consider the coloring χ as a vector x of {-1,1}ⁿ (according to some ordering of X)
- Consider each element of \mathcal{F} as its indicator vector v_F (according to the same ordering)
- Then $|\chi(F)| = \langle x, v_F \rangle$

• The algorithm is a random walk in the polytope formed by the intersection of $\{-1,1\}^n$ and halfspaces defined by $\langle x, v_F \rangle \leq \lambda_F$

 The algorithm is a random walk in the polytope formed by the intersection of {−1,1}ⁿ and halfspaces defined by ⟨x, v_F⟩ ≤ λ_F

 The walk simply progresses by moving along unit-size gaussian vectors in each direction

- The walk simply progresses by moving along unit-size gaussian vectors in each direction
- The walk moves along the constraints hit

- The walk simply progresses by moving along unit-size gaussian vectors in each direction
- The walk moves along the constraints hit
- The goal is to reach a corner of the cube

- The walk simply progresses by moving along unit-size gaussian vectors in each direction
- The walk moves along the constraints hit
- The goal is to reach a corner of the cube
- If too many constraints are too close to the center it won't be possible

- The walk simply progresses by moving along unit-size gaussian vectors in each direction
- The walk moves along the constraints hit
- The goal is to reach a corner of the cube
- If too many constraints are too close to the center it won't be possible