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δ-packings

δ = 9

Given (X ,F) a set system, a δ-packing is a collection P ⊆ F such that:

∀P1,P2 ∈ P, |∆(P1,P2)| ≥ δ
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δ-packings

δ = 9

We will study maximal packings
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δ-coverings

δ = 9

A δ-covering is a collection C ⊆ F such that:

∀F ∈ F ,∃C ∈ C s.t. |∆(F ,C )| ≤ δ

Alexandre Louvet (USPN) δ-packings for finite VC and discrepancy October 10, 2023 4 / 32



δ-coverings

δ = 9

A δ-covering is a collection C ⊆ F such that:

∀F ∈ F ,∃C ∈ C s.t. |∆(F ,C )| ≤ δ

Alexandre Louvet (USPN) δ-packings for finite VC and discrepancy October 10, 2023 4 / 32



δ-coverings

δ = 9

A δ-covering is a collection C ⊆ F such that:

∀F ∈ F ,∃C ∈ C s.t. |∆(F ,C )| ≤ δ

Alexandre Louvet (USPN) δ-packings for finite VC and discrepancy October 10, 2023 4 / 32



δ-coverings

δ = 9

A maximal δ-packing is a minimal δ-covering, however the opposite is not
true
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How big can it get?

We study the size of a packing for general set systems:

Consider the set system ([n], 2[n]) and δ ∈ [0, n],

Partition X in X1,X2, . . . ,X n
δ
each of size δ

Consider the sets

{⋃
i∈I

Xi : I ⊆ [nδ ]

}
Any two distinct unions are at symmetric difference at least δ

They form a packing of size 2
n
δ
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Problems

P1: Improving the bound on maximal packing’s size (extensively
studied)

→ [Hau95] for finite VC-dimension set systems
→ [Fox+15] for semi-algebraic set systems
→ [DEG16; Mus16] for set systems with bounded shallow-cell complexity

P2: Efficient algorithms to compute approximate maximal
packings/minimal coverings

→ [MWW93b] finds an approximate δ-covering in time O
(

mn2

δ2

)
→ A greedy algorithm finds a maximal δ-packing in time O

(
mn

(
n
δ

)d)
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Geometric set systems

(X ,F) induced by halfspaces

E ⊆ X is in F iff there exists a halfspace H such that H ∩ X = E
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Geometric set systems

(X ,F) induced by halfspaces

E ⊆ X is in F iff there exists a halfspace H such that H ∩ X = E

Theorem:

A packing of a set system induced by halfspaces in Rd has size at most

O
((

n
δ

)d)
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Cuttings

We introduce a partition of space called cuttings that we will use for the
proof of the packing bound.

Given a set H of hyperplanes in Ed , a 1
r -cutting for H is a collection of

d-dimensional simplices with disjoint interiors, together covering Ed and
such that the interior of each simplex intersects at most |H|

r hyperplanes.

[Cha01]

Theorem [Cha93]

One can construct a 1
r -cutting of size O(rd) in time O(nrd−1)
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Proof of the packing bound for halfspaces

Theorem:

A packing of a set system induced by halfspaces in Rd has size at most

O
((

n
δ

)d)

Proof sketch:

Given a set system (X ,F) consider its dual (Y ,G)

A δ
n -cutting of (Y ,G) gives a collection of O

((
n
δ

)d)
each intersected

by at most δ hyperplanes

The number of hyperplanes of G intersecting the segment between
two elements of Y is equal to the symmetric difference between the
dual of these two elements in F
Thus a packing can only contain at most one element from each

simplex which gives a bound of O
((

n
δ

)d)
on its size
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Generalization with VC-dimension

We now consider the generalization of this result to combinatorial set
systems:

The VC-dimension of a set system (X ,F), is the size of the largest Y ⊆ X
for which |F ∩ Y : F ∈ F| = 2|Y |

Halfspaces

Set system spanned by halfspaces of Rd have VC-dimension d + 1

Sauer-Shelah lemma [Sau72; She72]

If (X ,F) has VC-dimension ≤ d , then |F| = O(nd)
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Packing lemma

Packing lemma [Hau95]

Let (X ,F) be a set system with finite VC-dimension ≤ d , then δ-packing

of (X ,F) has size O
((

n
δ

)d)

Interpretation:

The symmetric difference can be seen as a metric for sets

Then the δ-packing question is similar to packing spheres of radius δ
in a sphere of radius n

The volume of a sphere of radius δ in Rd is O(δd), thus the packing

would have size O
((

n
δ

)d)
This theorem shows that packing sets of VC-dimension d is similar to
sphere packing in Rd
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Packing/Covering algorithms for finite VC-dimension

We look at efficient algorithms to compute packings/coverings:

Recall:

A greedy algorithm finds a maximal δ-packing in time O
(
mn

(
n
δ

)d)
[MWW93b] finds a δ-covering of size O

((
n
δ log

(
n
δ

))d)
in time

O
(
mn2

δ2

)
A near-maximal δ-packing of a set system (X ,F) is collection P ⊆ F
such that:

P is a δ-packing

P is a 3δ-covering

Theorem

We compute a near-maximal δ-packing in time Õ
(
mn2

δ2
+
(
n
δ

)2d+2
)
.
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(
mn2

δ2
+
(
n
δ

)2d+2
)
.

Alexandre Louvet (USPN) δ-packings for finite VC and discrepancy October 10, 2023 13 / 32



Packing/Covering algorithms for finite VC-dimension

We look at efficient algorithms to compute packings/coverings:

Recall:

A greedy algorithm finds a maximal δ-packing in time O
(
mn

(
n
δ

)d)
[MWW93b] finds a δ-covering of size O

((
n
δ log

(
n
δ

))d)
in time

O
(
mn2

δ2

)
A near-maximal δ-packing of a set system (X ,F) is collection P ⊆ F
such that:

P is a δ-packing

P is a 3δ-covering

Theorem

We compute a near-maximal δ-packing in time Õ
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Proof: ε− approximation

We introduce ε-approximation which we need for our algorithm:

Given (X ,F), an ε-approximation is a set A such that:

∀F ∈ F ,
∣∣∣∣ |F ||X | − |F ∩ A|

|A|

∣∣∣∣ ≤ ε

|X | = 22, ε = 1/22 (no more than one element difference in each set)
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Proof: Constructing a packing

We first show how to construct a near-maximal δ-packing:

Algorithm Packing(F)
1: A ← random sample of X of

size O
(
4n2

δ2

)
2: P ← ∅
3: for F ∈ F do
4: if ∀P ∈ P, |∆(P ∩ A,F ∩

A)| ≥ 3n
2δ then

5: P ← P ∪ {F}
6: end if
7: end for
8: return P

A is a δ
2 -approximation of (X ,F)

→ δ = 3δ
2 −

δ
2 ≤ |∆(P,F )| ≤

3δ
2 + δ

2 = 2δ
→ P is a δ-packing and a

2δ-covering
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Proof: ε− nets

We introduce ε-nets which we need for our algorithm:

Given (X ,F), an ε-net is a set N such that:

∀F ∈ F , |F | ≥ ε|X |, |F ∩ N| > 0

|X | = 22, ε = 5/22 (sets with 5 elements and more)
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Proof: An algorithm for small δ-covering [MWW93b]

We show how to construct a small δ-covering:

Algorithm δ-covering algorithm

1: S ← ∅
2: C ← ∅
3: N ← uniform random sample of

X of size O
(
n
δ log

(
n
δ

))
4: for F ∈ F do
5: Q ← F ∩ N
6: if Q /∈ S then
7: S ← S ∪ {Q}
8: C ← C ∪ {F}
9: end if

10: end for
11: return (C)

N is a δ
n -net, i.e. sets bigger

than δ contain an element of N

If F ,F ′ ∈ F are such that
F ∩ N = F ′ ∩ N, then
|∆(F ,F ′)| ≤ δ

By Sauer-Shelah’s lemma,
|C| = O

(
|N|d

)
= O

(
(nδ )

d logd
(
n
δ

))
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Proof: Combining the two ideas

Compute a O
(
(nδ )

d logd
(
n
δ

))
-size δ-covering C. This takes time

O
(
mn2

δ2
+ (nδ )

d logd(nδ )
)

Apply the packing algorithm on C to obtain a δ-packing P. The
result is a 3δ-covering since ∀F ∈ F ,∃C ∈ C s.t. ∆(F ,C ) ≤ δ and
∀C ∈ C, ∃P ∈ P s.t. ∆(C ,P) ≤ 2δ

This takes time O
(
(nδ )

2d+2 logd(nδ )
)
giving total runtime of

Õ
(
mn2

δ2
+ (nδ )

2d+2
)
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Set discrepancy

We want to compute a 2-coloring χ : X → {−1, 1} s.t.
∀F ∈ F , χ(F ) =

∑
x∈F

χ(x) is small. We call discrepancy and denote:

disc(X ,F) = max
F∈F
|χ(F )|
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Previous bounds

Matousek [Mat95] proved that for VC-dimension ≤ d set systems
disc((X ,F)) = O(n1/2−1/2d). This result is non-constructive and is
obtained using chaining.

Lovett and Meka [LM12] obtain optimal discrepancy for general set
systems when m = n in time Õ((m + n)3)

Matousek,Welzl and Wernisch [MWW93a]’s cover algorithm used

with [LM12] gives discrepancy O
(
n1/2−1/2d log3/2(n)

)
in time

O
(
mn2/d + n3 log3d(n)

)
The greedy packing algorithm with [LM12] gives discrepancy

O
(
n1/2−1/2d log1/2(n)

)
in time O

(
mn2 + n3

)
Theorem:

Given a set system of VC-dimension ≤ d , we compute a coloring with
discrepancy O

(
n1/2−1/2d

)
in time O

(
mn2/d + n3 log3d(n)

)
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Proof: Sub-optimal result

We first show how to obtain discrepancy O(n1/2−1/2d
√

log(m))

Given two sets F ,F ′ : disc(F ) ≤ disc(F ′)+disc(F\F ′) + disc(F ′\F )
We compute a near-maximal n1−1/d -packing and use [LM12]’s
algorithm such that all set in the packing have discrepancy
O(n1/2−1/2d)

[LM12] gives
√
|S | log(m) discrepancy on a set S not used as

constraint. Thus the symmetric difference sets have discrepancy√
n1−1/d log(m)

This gives disc(F ) ≤
disc(P)+disc(P\F ) + disc(F\P) = O

(√
n1−1/d log(m)

)
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Proof: Optimality with chaining

We now show how to use chaining to get rid of the extra
√
log(m) factor

in the discrepancy bound.

We compute near-maximal n1−1/d

2i
-packing Pi (for i ∈ [0, log logm])

disc(F ) ≤ disc(P0)+disc(∆(P0,P1)) +

. . .+disc(∆(Plog logm−1,Plog logm)) + disc(E ), where |E | ≤ n1−1/d

log(m)

E has discrepancy O(n1/2−1/2d) and by carefully choosing the

parameters to use [LM12], so does
log log(m)∑

i=1
disc(∆(Pi−1,Pi ))

We use [LM12] with n points and
log logm∑

i=0
|Pi | = n log(n) sets which

gives runtime O(n3 log3d(n))
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log log(m)∑

i=1
disc(∆(Pi−1,Pi ))

We use [LM12] with n points and
log logm∑

i=0
|Pi | = n log(n) sets which

gives runtime O(n3 log3d(n))
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Results on ε-approximation

By computing iterated discrepancy, we obtain an ε-approximation of

size O
(
ε−

2d
d+1

)
in time O

([
mn2/d + n3 log3d(n)

]
log

(
1
ε

))

Using the merge and reduce framework [CM96], this gives an

ε-approximation of size O
(
ε−

2d
d+1

)
in time Õ

(
n
ε2d

)
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Open problems

Is it possible to find a polynomial-time algorithm for (near-)maximal
packings with degree < d (for δ bigger than a constant)?

Is it possible to find faster algorithm set systems with smaller packing
size than Haussler’s bound?
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The optimization setup

Consider the coloring χ as a vector x of {−1, 1}n (according to some
ordering of X )

Consider each element of F as its indicator vector vF (according to
the same ordering)

Then |χ(F )| = ⟨x , vF ⟩
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[LM12] random walk and entropy

The algorithm is a random walk in the polytope formed by the
intersection of {−1, 1}n and halfspaces defined by ⟨x , vF ⟩ ≤ λF
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The algorithm is a random walk in the polytope formed by the
intersection of {−1, 1}n and halfspaces defined by ⟨x , vF ⟩ ≤ λF

Entropy condition∑
F∈F

e−λF
2 ≤ n

The walk simply
progresses by moving
along unit-size gaussian
vectors in each direction

The walk moves along
the constraints hit

The goal is to reach a
corner of the cube

If too many constraints
are too close to the
center it won’t be
possible
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