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X +— ground set F +— collection of subsets of X
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Problem statement

2-coloring: x: X —» {-1,1}

discrepancy w.r.t. x: disc, (X, 5) = max

discrepancy of (X, F): X:Xr—r>l{i£ll,1} disc, (X, F)

Goal: Compute a small discrepancy coloring

5/18
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When does it get difficult?

Easy until ®(n) sets: For ©(n) sets, one can find colorings with discrepancy ©(1)!
Hard for m = Q(n): (\/n log(%)) in general, Q(n%_%) for VC-dim d
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Discrepancy and symmetric difference

VE, F e F, [x(F)| < [X(F')| + [x(F\ F')[ + [x(F"\ F)]
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« To compute e-approximations, we solve the combinatorial discrepancy problem
« Discrepancy is easy for a few ranges
- Discrepancy is easy for ranges close to ranges with low discrepancy

L> Let’s find a (small) set of ranges such that all ranges are close to one of them!

9/18



0-covering

10/ 18



0-covering

CCFst.VFeF,3C €Cwith |AF,C)| <3

-~

= [(F\C)U(C\F)|

10/ 18



0-covering

CCFst.VFeF,3C €Cwith |AF,C)| <3

-~

= [(F\C)U(C\F)|

In general: O(e%) large!

10/ 18



0-covering

CCFst.VFeF,3C €Cwith |AF,C)| <3

-~

= [(F\C)U(C\F)|

In general: O(e%) large!

BUT

10/ 18



0-covering

CCFst.VFeF,3C €Cwith |AF,C)| <3

-~

= [(F\C)U(C\F)|

In general: O(e%) large!
BUT

VC-dimension d set systems: O((%)d) (Haussler 1995)

10/ 18



0-covering

CCFst.VFeF,3C €Cwith |AF,C)| <3

-~

= [(F\C)U(C\F)|

In general: O(e%) large!
BUT

VC-dimension d set systems: O((%)d) (Haussler 1995)

Can be polynomially computed starting from a random sample of X (e-net) (Matousek et al.
1993, Louvet 2025)

10/ 18



Putting it all together

11/ 18



Putting it all together

d
nl~a-covering of (X, F) of size O (( 1’1) ) = O(n)

11/ 18



Putting it all together

1
n d

d
nl~a-covering of (X, F) of size O (( - ) ) = O(n)

“> Coloring x with O(1) discrepancy on these ranges

11/ 18



Putting it all together

d
nl~a-covering of (X, F) of size O (( - ) ) = O(n)

1
n d
“> Coloring x with O(1) discrepancy on these ranges

Other ranges are at distance at most nl=a

11/ 18



Putting it all together

1
n d

d
nl~a-covering of (X, F) of size O (( = ) ) = O(n)

“> Coloring x with O(1) discrepancy on these ranges

Other ranges are at distance at most nl=a

= Ix(F)] < [x(O)] + [Xx(F\ C)| + [x(C\ F)

11/ 18



Putting it all together

L
n- d

nl~a-covering of (X, F) of size O (( 2

“> Coloring x with O(1) discrepancy on these ranges

Other ranges are at distance at most nl=a

S [X(F)| < [X(C)] + [X(F\ O)l + (C \ )] = O(/n'~% log(m)

11/ 18



Putting it all together

L
n- d

nl~a-covering of (X, F) of size O (( 2

“> Coloring x with O(1) discrepancy on these ranges

Other ranges are at distance at most nl=a

S [X(F)| < X(C)] + [X(F\ )| + [X(C\ F)| = O( y/n'# log(m)
With a little more effort (chaining), one can obtain O (n%_%) (optimal)
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We have a difficult problem to solve (combinatorial discrepancy)
We compute an approximation of the data (0-covering)
We solve the problem really well on the approximation (© (1) discrepancy)

We obtain a good guarantee on the original set system (Optimal order worst-case
discrepancy)
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Consider the counting query (How many x have property y?)

To make it DP: compute true answer and then randomize it (Laplacian mechanism)

What if instead, one answers by making a counting query on an e-approximation of the set
system and computing proportionality.

Aim: Improving runtime (less elements in the counting query) and maybe utility
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Current DP paradigm:
Algorithmic process Noise addition .
Data » Exact answer » Noised answer (DP)
high complexity low complexity

Prospective DP paradigm:

Approximation Algorithmic process

Data » Approximated/Noised data > Noised answer (DP?)

intermediate complexity intermediate complexity

Some technical challenges:

o Characterizing the distribution of errors where most results focus only on worst case error.
. Extending some algorithms to return “out-data” results.

Thank you.
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