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discrepancy of (𝑋, ℱ︀):   min
𝜒:𝑋→{−1,1}

disc𝜒(𝑋, ℱ︀)

Goal: Compute a small discrepancy coloring
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When does it get difficult?

Easy until Θ(𝑛) sets: For Θ(𝑛) sets, one can find colorings with discrepancy Θ(1)!
Hard for 𝑚 = Ω(𝑛): Ω(√𝑛 log(𝑚

𝑛 )) in general, Ω(𝑛1
2− 1

2𝑑 ) for VC-dim 𝑑
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Discrepancy and symmetric difference

  

∀𝐹, 𝐹 ′ ∈ ℱ︀, |𝜒(𝐹)| ≤ |𝜒(𝐹 ′)| + |𝜒(𝐹 \ 𝐹 ′)| + |𝜒(𝐹 ′ \ 𝐹)|
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Recap

• To compute 𝜀-approximations, we solve the combinatorial discrepancy problem

• Discrepancy is easy for a few ranges

• Discrepancy is easy for ranges close to ranges with low discrepancy

⤷ Let’s find a (small) set of ranges such that all ranges are close to one of them!
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≤ 𝛿

In general: 𝑂(𝑒𝑛
𝛿 ) large!

BUT

VC-dimension 𝑑 set systems: 𝑂((𝑛
𝛿 )𝑑) (Haussler 1995)

Can be polynomially computed starting from a random sample of 𝑋 (𝜀-net) (Matousek et al. 

1993, Louvet 2025)
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𝑑

⤷ |𝜒(𝐹)| ≤ |𝜒(𝐶)| + |𝜒(𝐹 \ 𝐶)| + |𝜒(𝐶 \ 𝐹)| = 𝑂(√𝑛1−1
𝑑 log(𝑚))

With a little more effort (chaining), one can obtain 𝑂(𝑛1
2− 1

2𝑑 ) (optimal)
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Summary

We have a difficult problem to solve (combinatorial discrepancy)

We compute an approximation of the data (𝛿-covering)

We solve the problem really well on the approximation (Θ(1) discrepancy)

We obtain a good guarantee on the original set system (Optimal order worst-case 

discrepancy)
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To make it DP: compute true answer and then randomize it (Laplacian mechanism)

What if instead, one answers by making a counting query on an 𝜀-approximation of the set 

system and computing proportionality.

Aim: Improving runtime (less elements in the counting query) and maybe utility
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Current DP paradigm:

Data →
Algorithmic process

high complexity
 Exact answer →

Noise addition

low complexity
 Noised answer (DP)

Prospective DP paradigm:

Data →
Approximation

intermediate complexity
 Approximated/Noised data →

Algorithmic process

intermediate complexity
 Noised answer (DP?)

Some technical challenges:

• Characterizing the distribution of errors where most results focus only on worst case error.

• Extending some algorithms to return “out-data” results.

Thank you.
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